The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life-Cycle Assessment
2.2. Methods and Data Sources
3. Results and Discussion
3.1. Environmental Impact of Different Methods of Treating Restaurant Food Waste
3.2. Resource Consumption of Anaerobic Digestion–Aerobic Composting Technique
3.3. Assessment of Environmental Impact of Anaerobic Digestion–Aerobic Composting Technique
3.3.1. Environmental Impact of All Phases
3.3.2. Main Factors Influencing Different Types of Environmental Impacts
3.4. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Clercq, D.; Wen, Z.; Fan, F. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in china and implications for national policy. J. Environ. Manag. 2017, 189, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, M.; Yu, J.; Zhang, G. Food waste management in china: Status, problems and solutions. Acta Ecol. Sin. 2012, 32, 4575–4584. (In Chinese) [Google Scholar]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runzhi, F. Deep Interpretation: Where Is the Food Waste? Available online: http://www.sohu.com/a/113254730_119798. (accessed on 17 July 2018). (In Chinese).
- Du, X.; Chen, T.; Li, H.; Ren, L.; Jin, Y. Environmental impact analysis of two kinds of typical food waste recycling process. Chin. J. Environ. Eng. 2010, 4, 189–194. (In Chinese) [Google Scholar]
- Bernstad, A.; la Cour Jansen, J. Review of comparative lcas of food waste management systems—Current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Bernstad Saraiva Schott, A.; Wenzel, H.; la Cour Jansen, J. Identification of decisive factors for greenhouse gas emissions in comparative life cycle assessments of food waste management—An analytical review. J. Clean. Prod. 2016, 119, 13–24. [Google Scholar] [CrossRef]
- Xu, T. Life Cycle Assessment of Food Waste—Taking Shenzhen as an Example. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2013. (In Chinese). [Google Scholar]
- Shen, C. Study on the Utilization of Food Waste in Guangzhou City. Master’s Thesis, South China University of Technology, Guangzhou, China, 2013. (In Chinese). [Google Scholar]
- Chen, B.; Feng, J.; Huang, W.; Liu, C. Application of life cycle model to evaluate food waste disposal technology. Chin. J. Environ. Eng. 2011, 5, 1857–1862. (In Chinese) [Google Scholar]
- Bernstad, A.; la Cour Jansen, J. A life cycle approach to the management of household food waste—a swedish full-scale case study. Waste Manag. 2011, 31, 1879–1896. [Google Scholar] [CrossRef]
- Salemdeeb, R.; Zu Ermgassen, E.K.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, J.W. Comparison through a lca evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef]
- Ahamed, A.; Yin, K.; Ng, J.H.; Ren, F.; Chang, V.W.C.; Wang, J.Y. Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives. J. Clean. Prod. 2016, 131, 607–614. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Franchetti, M. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using lca for: A food service provider case study. J. Environ. Manag. 2013, 123, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Zheng, S.; Dou, L. Analysis on the feasibility of waste recycling of cooking waste in lanzhou. J. Northwest Norm. Univ. (Nat. Sci. Ed.) 2010, 46, 114–118. (In Chinese) [Google Scholar]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon footprint of food waste management options in the waste hierarchy—A swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Li, W.; Ding, J.; Liu, J.; He, Y. Study on energy-saving efficiency of food waste in lanzhou city in solid waste. Gansu Sci. Technol. 2012, 28, 38–40. (In Chinese) [Google Scholar]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A uk case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, T.; Chen, X.; Yu, Z. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Appl. Energy 2015, 151, 227–236. [Google Scholar] [CrossRef]
- Woon, K.S.; Lo, I.M.; Chiu, S.L.; Yan, D.Y. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on lca approach. Waste Manag. 2016, 50, 290–299. [Google Scholar] [CrossRef]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresour. Technol. 2017, 223, 237–249. [Google Scholar] [CrossRef]
- Xu, C.; Shi, W.; Hong, J.; Zhang, F.; Chen, W. Life cycle assessment of food waste-based biogas generation. Renew. Sustain. Energy Rev. 2015, 49, 169–177. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Yang, Y.; Yang, Y.; Man, X. State of the art on food waste research: A bibliometrics study from 1997 to 2014. J. Clean. Prod. 2017, 140, 840–846. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinee, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Stichnothe, H.; Azapagic, A. Bioethanol from waste: Life cycle estimation of the greenhouse gas saving potential. Resour. Conserv. Recycl. 2009, 53, 624–630. [Google Scholar] [CrossRef]
- Cristóbal, J.; Limleamthong, P.; Manfredi, S.; Guillén-Gosálbez, G. Methodology for combined use of data envelopment analysis and life cycle assessment applied to food waste management. J. Clean. Prod. 2016, 135, 158–168. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, Y.; De Clercq, D. What is the true value of food waste? A case study of technology integration in urban food waste treatment in suzhou city, china. J. Clean. Prod. 2016, 118, 88–96. [Google Scholar] [CrossRef]
- Institute, P.I.R. 2017–2022 China Food Waste Disposal Industry Development Prospects and Investment Strategy Planning Report; WisdomSource Group: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Nong, C.; Xu, Z.; Tang, L.; Zhang, F. Analysis of characteristics and processing technology of food waste in food. Environ. Eng. 2014, 32, 626–629. (In Chinese) [Google Scholar]
- Xia, M.; Shi, D. Study on the present situation and countermeasures of food waste management in jiangsu province. Environ. Health Eng. 2015, 23, 67–70. (In Chinse) [Google Scholar]
- Zhou, W.; Jiao, L. Gansu Province Governor Lin Duo Research Lanzhou Food Waste Recycling Project. 2016. Available online: http://gs.people.com.cn/n2/2016/1118/c183348-29328576.html (accessed on 20 November 2018). (In Chinese).
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wang, R. Product Life Cycle Assessment Method and Application; Meteorological Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Wang, S.; Hu, D.; Wu, Q. Life cycle assessment and its application in environmental management. China Environ. Sci. 1999, 19, 78–81. (In Chinese) [Google Scholar]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. Impact 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324. [Google Scholar] [CrossRef]
- Bare, J. Traci 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 2011, 13, 687–696. [Google Scholar] [CrossRef]
- Rafieenia, R.; Girotto, F.; Peng, W.; Cossu, R.; Pivato, A.; Raga, R.; Lavagnolo, M.C. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag. 2017, 59, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Qu, X. Research on Life Cycle Assessment of Domestic Waste Treatment System in Qingdao. Master’s Thesis, Qingdao University of Science and Technology, Qingdao, China, 2011. (In Chinese). [Google Scholar]
- Gang, J. Study on the Evaluation of Urban Domestic Refuse Collection and Transportation System. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2009. (In Chinese). [Google Scholar]
- Guo, Y. Life Cycle Assessment of Municipal Solid Waste Treatment System. Master’s Thesis, Dalian University of Technology, Dalian, China, 2003. (In Chinese). [Google Scholar]
- Gao, A.; Tian, Z.; Wang, Z.; Wennersten, R.; Sun, Q. Comparison between the technologies for food waste treatment. Energy Procedia 2017, 105, 3915–3921. [Google Scholar] [CrossRef]
- Huang, N.; Wang, H.; Fan, C.; Zhou, S.; Hou, P.; Jie, Y. Lca data quality assessment and control based on uncertainty and sensitivity analysis. Acta Sci. Circumstantiae 2012, 32, 1529–1536. (In Chinese) [Google Scholar]
Resources/Substance/Emissions | Phase | Data Source |
---|---|---|
Diesel, CO2, CH4, NOX, SO2, VOC, CO, HC, Pb | Collection and transportation | Chinai Bioenergy; [41,42,43] |
Water, electricity, grease, liquid phase, solid phase, H2S, NH3, COD, BOD, SS, NH3-N | Pre-processing | Chinai Bioenergy |
Electricity, biogas, biogas residue, biogas slurry, wastewater, CO2, CH4, COD, BOD, NH3-N, SS | Anaerobic digestion | Chinai Bioenergy; [8,44] |
Electricity, CO2, CO, CH4, NOX, SO2 | Biogas power generation and heating | Chinai Bioenergy; [9] |
Water, aerobic composting additive, CO2, CH4, SOX, VOC, NH3, PM10, Cd, phosphate, sulfate | Composting | Chinai Bioenergy; [8,44] |
Wastewater, ferric chloride, electricity, sludge, NH3, Pb, Cd, Cr, Hg, COD, BOD, NH3-N, SS, H2S | Wastewater treatment | Chinai Bioenergy; [24] |
Category | Unit | S1 | S2 | S3 |
---|---|---|---|---|
Acidification potential | kg SO2-Equiv | 0.2 | 0.34 | 0.5 |
Eutrophication potential | kg phosphate-Equiv | 0.11 | 0.3 | 0.1 |
Freshwater aquatic ecotoxicity potential | kg DCB-Equiv | 0.34 | 0.02 | 0.03 |
Global warming potential | kg CO2-Equiv | 274.57 | 592.65 | 757.8 |
Human toxicity potential | kg DCB-Equiv | 0.6 | 0.32 | 1.58 |
Marine aquatic ecotoxicity potential | kg DCB-Equiv | 53.05 | 4.92 | 67.26 |
Photochemical ozone creation potential | kg ethene-Equiv | 0.04 | 0.16 | 0.05 |
Terrestrial ecotoxicity potential | kg DCB-Equiv | 0.1 | 0.01 | 0.22 |
Environmental impact normalized value | - | 9.84 × 10−12 | 2.19 × 10−11 | 2.34 × 10−11 |
Resource Consumption Type | Non-Renewable Resources | Renewable Resources | Non-Renewable Energy Resources |
---|---|---|---|
Sum | 33.33 | 341.98 | 45.61 |
Collection and transportation | 0 | 0 | 1.33 |
Pre-processing | 0 | 340.32 | 24.25 |
Solid composting | 33.33 | 1.67 | 0 |
Anaerobic digestion | 0 | 0 | 0 |
Biogas power generation | 0 | 0 | 0 |
Biogas heating | 0 | 0 | 0 |
Biogas slurry composting | 0 | 0 | 0 |
Wastewater treatment | 0 | 0 | 20.02 |
Category | Acidification Potential | Eutrophication Potential | Freshwater Aquatic Ecotoxicity Potential | Global Warming Potential | Human Toxicity Potential | Marine Aquatic Ecotoxicity Potential | Photochemical Ozone Creation Potential | Terrestrial Ecotoxicity Potential |
---|---|---|---|---|---|---|---|---|
Sum | 8.36 × 10−13 | 7.16 × 10−13 | 1.45 × 10−13 | 6.56 × 10−12 | 2.31 × 10−13 | 2.73 × 10−13 | 9.86 × 10−13 | 8.8 × 10−14 |
Collection and transportation | 2.11 × 10−14 | 7.28 × 10−15 | 3.71 × 10−15 | 9.07 × 10−14 | 1.1 × 10−13 | 2.12 × 10−14 | 2.11 × 10−13 | 9.14 × 10−15 |
Pre-processing | 2.17 × 10−13 | 6.87 × 10−14 | 0 | 0 | 1.36 × 10−15 | 0 | 0 | 0 |
Solid composting | 2.37 × 10−13 | 1.46 × 10−13 | 1.12 × 10−14 | 1.81 × 10−12 | 1.91 × 10−14 | 4.12 × 10−14 | 2.3 × 10−13 | 3.61 × 10−21 |
Anaerobic digestion | 5.02 × 10−14 | 3.47 × 10−13 | 1.47 × 10−20 | 2.36 × 10−12 | 3.72 × 10−16 | 3.54 × 10−23 | 4.17 × 10−13 | 3.61 × 10−21 |
Biogas power generation | 8.73 × 10−14 | 3.31 × 10−14 | 0 | 1 × 10−12 | 1.88 × 10−14 | 0 | 5.22 × 10−14 | 0 |
Biogas heating | 1.14 × 10−13 | 4.33 × 10−14 | 0 | 1.3 × 10−12 | 2.46 × 10−14 | 0 | 7.53 × 10−14 | 0 |
Biogas slurry composting | 1.08 × 10−13 | 3.33 × 10−14 | 0 | 0 | 6.79 × 10−16 | 0 | 0 | 0 |
Wastewater treatment | 6.09 × 10−16 | 3.73 × 10−14 | 1.3 × 10−13 | 0 | 5.59 × 10−14 | 2.11 × 10−13 | 0 | 7.89 × 10−14 |
Category | Unit | CML2001 | ReCiPe1.08 | IMPACT 2002+ | TRACI 2.1 |
---|---|---|---|---|---|
Acidification potential | kg SO2-eq | 0.2 | - | 0.17 | 0.24 |
Eutrophication potential | kg phosphate-eq | 0.11 | - | 0.01 PO4-eq | 0.19 N-eq |
Freshwater aquatic ecotoxicity potential | kg DCB-eq | 0.34 | 0.01 | - | - |
Global warming potential | kg CO2-eq | 274.57 | 275.14 | 204.35 | 274.57 |
Human toxicity potential | kg DCB-eq | 0.6 | 41.54 | - | - |
Marine aquatic ecotoxicity potential | kg DCB-eq | 53.05 | 1.88 | - | - |
Photochemical ozone creation potential | kg ethene-eq | 0.04 | 0.03 | 0.04 C2H4-eq | - |
Terrestrial ecotoxicity potential | kg DCB-eq | 0.1 | 0.02 | - | - |
Category | Unit | CML2001 | Diesel | Water | Electricity | Aerobic Composting Additive | Ferric Chloride |
---|---|---|---|---|---|---|---|
5% | 5% | 5% | 5% | 5% | |||
Acidification potential | kg SO2-eq | 0.2 | 0.2 | 0.2 | 0.29 | 0.2 | 0.2 |
Eutrophication potential | kg phosphate-eq | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 |
Freshwater aquatic ecotoxicity potential | kg DCB-eq | 0.34 | 0.34 | 0.34 | 0.37 | 0.34 | 0.34 |
Global warming potential | kg CO2-eq | 274.57 | 274.76 | 274.65 | 277.25 | 274.57 | 274.57 |
Human toxicity potential | kg DCB-eq | 0.6 | 0.61 | 0.6 | 2.49 | 0.6 | 0.6 |
Marine aquatic ecotoxicity potential | kg DCB-eq | 53.05 | 53.26 | 53.86 | 202.79 | 53.05 | 53.05 |
Photochemical ozone creation potential | kg ethene-eq | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Terrestrial ecotoxicity potential | kg DCB-eq | 0.1 | 0.1 | 0.1 | 0.13 | 0.1 | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Han, W.; Chen, X.; Yang, N.; Lu, C.; Wang, Y. The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China. Appl. Sci. 2019, 9, 3608. https://doi.org/10.3390/app9173608
Zhang Z, Han W, Chen X, Yang N, Lu C, Wang Y. The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China. Applied Sciences. 2019; 9(17):3608. https://doi.org/10.3390/app9173608
Chicago/Turabian StyleZhang, Zilong, Wenyan Han, Xingpeng Chen, Na Yang, Chenyu Lu, and Yueju Wang. 2019. "The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China" Applied Sciences 9, no. 17: 3608. https://doi.org/10.3390/app9173608
APA StyleZhang, Z., Han, W., Chen, X., Yang, N., Lu, C., & Wang, Y. (2019). The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China. Applied Sciences, 9(17), 3608. https://doi.org/10.3390/app9173608