High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Procedures
2.3. Methods
3. Results and Discussion
3.1. Structural Characterization
3.1.1. SEM
3.1.2. XRD
3.2. High-Temperature Property Analysis
3.2.1. Viscosity
3.2.2. DSR
3.2.3. TG
3.3. Low-Temperature Property Analysis
3.3.1. BBR
3.3.2. DSC
4. Conclusions
- (1)
- MMT, REC, OMMT, and OREC are all intercalated structures, wherein OREC has the largest interlayer space, followed by REC, OMMT, and MMT.
- (2)
- OREC endowed virgin bitumen with the best high-temperature property, contrary to MMT, and REC-modified bitumen has a similar high-temperature property to OMMT-modified bitumen. Therefore, organic treatment is conductive to the high temperature of layered silicate-modified bitumens, and REC (OREC), with a larger interlayer space and aspect ratio, restricts the motion of bitumen molecules more significantly than MMT (OMMT).
- (3)
- Compared with REC and OREC, MMT and OMMT have a smaller interlayer space and aspect ratio, and are less efficient in reducing the low-temperature property of virgin bitumen, and OMMT is the least efficient.
- (4)
- The nature of layered silicates largely affects the high and low-temperature properties of bitumen; however, this investigation is limited to one bitumen source rather than various sources, and thus further research is required.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MMT | montmorillonite |
OMMT | organic montmorillonite |
REC | rectorite |
OREC | organic rectorite |
DSR | dynamic shear rheometer |
TG | thermogravimetry |
BBR | bending beam rheometer |
DSC | differential scanning calorimetry |
SBR | styrene-butadiene rubber |
CR | chloroprene rubber |
SBS | styrenebutadiene-styrene copolymers |
PE | poluethylene |
EVA | ethylene-vinyl acetate |
EP | epoxy |
VMT | vermiculite |
SEM | scanning electron microscope |
XRD | X-ray diffraction |
Tg | glass transition temperature |
d001 | interlayer space |
G*/sinδδ | rutting resistance factor |
S | creep stiffness |
m-value | creep rate |
Ml | mass loss |
Rm | residual mass |
References
- Jiang, W.; Xiao, J.; Yuan, D.; Lu, H.; Xu, S.; Huang, Y. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy Build. 2018, 169, 39–47. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.; Chen, W.; Li, Y.; Sun, M.; Dai, W. Laboratory Assessment of Deteriorating Performance of Nano Hydrophobic Silane Silica Modified Asphalt in Spring-Thaw Season. Appl. Sci. 2019, 9, 2305. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, T. Non-Newtonian Behaviors of Crumb Rubber-Modified Bituminous Binders. Appl. Sci. 2018, 8, 1760. [Google Scholar] [CrossRef]
- Li, X.; Pei, J.; Shen, J.; Li, R. Experimental Study on the High-Temperature and Low-Temperature Performance of Polyphosphoric Acid/Styrene-Butadiene-Styrene Composite-Modified Asphalt. Adv. Mater. Sci. Eng. 2019, 2019, 16. [Google Scholar]
- Behnood, A.; Gharehveran, M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar]
- Tsantilis, L.; Dalmazzo, D.; Baglieri, O.; Santagata, E. Effect of SBS molecular structure on the rheological properties of ternary nanomodified bituminous binders. Constr. Build. Mater. 2019, 222, 183–192. [Google Scholar] [CrossRef]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface 2015, 224, 72–112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Jin, J.; Tan, Y.; Liu, R.; Lin, F.; Wu, Y.; Qian, G.; Wei, H.; Zheng, J. Structure characteristics of organic bentonite and the effects on rheological and aging properties of asphalt. Powder Technol. 2018, 329, 107–114. [Google Scholar] [CrossRef]
- Martinho, F.; Farinha, J. An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Mater. Pavement 2017, 20, 671–701. [Google Scholar]
- Fang, C.; Yu, R.; Liu, S.; Li, Y. Nanomaterials Applied in Asphalt Modification: A Review. J. Mater. Sci. Technol. 2013, 29, 589–594. [Google Scholar] [CrossRef]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, R.; Wang, J. Flame retardant and its influence on the performance of asphalt—A review. Constr. Build. Mater. 2019, 212, 841–861. [Google Scholar] [CrossRef]
- Wang, H.; Xie, H.; Wang, S.; Gao, Z.; Li, C.; Hu, G.; Xiong, C. Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos. Pt. A-Appl. Sci. Manuf. 2018, 108, 62–68. [Google Scholar] [CrossRef]
- Zare-Shahabadi, A.; Shokuhfar, A.; Ebrahimi-Nejad, S. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Constr. Build. Mater. 2010, 24, 1239–1244. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, M.; Jiao, W.; Qi, B.; Liu, H. Physical properties and microstructures of organic rectorites and their modified asphalts. Constr. Build. Mater. 2018, 171, 33–43. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Wei, L.; Wu, X.; Cui, X.; Zhang, H.; Lv, W.; Zhang, Q. Study on properties and mechanism of organic montmorillonite modified bitumens: View from the selection of organic reagents. Constr. Build. Mater. 2019, 217, 331–342. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Wang, X.; Yu, J. Microstructures and thermal aging mechanism of expanded vermiculite modified bitumen. Constr. Build. Mater. 2013, 47, 919–926. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Yan, K.; Yu, J. Effect of Rectorite and Its Organic Modification on Properties of Bitumen. J. Mater. Civ. Eng. 2015, 27. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar]
- Yin, X.; Gupta, V.; Du, H.; Wang, X.; Miller, J. Surface charge and wetting characteristics of layered silicate minerals. Adv. Colloid Interface 2012, 179–182, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Liu, F.; Xue, X. Synthesis and characterization of UV-curing epoxy acrylate coatings modified with organically modified rectorite. J. Coat. Technol. Res. 2016, 14, 107–115. [Google Scholar] [CrossRef]
- Tsantilis, L.; Baglieri, O.; Santagata, E. Low-temperature properties of bituminous nanocomposites for road applications. Constr. Build. Mater. 2018, 171, 397–403. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Zhu, C.; Zhao, B. Rheological examination of aging in bitumen with inorganic nanoparticles and organic expanded vermiculite. Constr. Build. Mater. 2015, 101, 884–891. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K. From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fiber–Cement Nanohybrids. Appl. Sci. 2019, 9, 1938. [Google Scholar] [CrossRef]
- Yu, J.; Feng, P.; Zhang, H.; Wu, S. Effect of organo-montmorillonite on aging properties of asphalt. Constr. Build. Mater. 2009, 23, 2636–2640. [Google Scholar] [CrossRef]
- Vargas, M.; Moreno, L.; Montiel, R.; Manero, O.; Vázquez, H. Effects of montmorillonite (Mt) and two different organo-Mt additives on the performance of asphalt. Appl. Clay Sci. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Li, Y.; Tian, G.; Dong, G.; Bai, S.; Han, X.; Liang, J.; Meng, J.; Zhang, H. Research progress on the raw and modified montmorillonites as adsorbents for mycotoxins: A review. Appl. Clay Sci. 2018, 163, 299–311. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, X.; Liang, G.; Yan, Y.; Wang, S. Adsorption behavior of Cr(VI) on organic-modified rectorite. Chem. Eng. J. 2008, 138, 187–193. [Google Scholar]
- Bee, S.L.; Abdullah, M.A.A.; Bee, S.T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar]
- Yu, J.; Zeng, X.; Wu, S.; Wang, L.; Liu, G. Preparation and properties of montmorillonite modified asphalts. Mat. Sci. Eng. A-Struct. 2007, 447, 233–238. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, P.; Zheng, P.; Ma, X. Rectorite–TiO2–Fe3O4 composites: Assembly, characterization, adsorption and photodegradation. Chem. Eng. J. 2014, 255, 49–54. [Google Scholar] [CrossRef]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.; Shi, X.; Deng, H. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar]
- Zhang, H.; Tan, B.; Xu, H.; Yan, K. Microstructures and Thermal Aging Properties of Layered Silicate Modified Bitumens. Petrol. Sci. Technol. 2014, 32, 1697–1703. [Google Scholar]
- Zhang, H.; Shi, C.; Han, J.; Yu, J. Effect of organic layered silicates on flame retardancy and aging properties of bitumen. Constr. Build. Mater. 2013, 40, 1151–1155. [Google Scholar] [CrossRef]
- AASHTO. AASHTO Designation: T 316–02: Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2002. [Google Scholar]
- Cao, L.; Tan, Y.; Dong, Z.; Cun, L. Evaluation for Low Temperature Performance of SBS Modified Asphalt Using Glass Transition Temperature. China J. Highway Transport. 2006, 19, 1–6. [Google Scholar]
- Zhang, L.; Tan, Y.; Hussain, B. Relationship between glass transition temperature and low temperature properties of oil modified binders. Constr. Build. Mater. 2016, 104, 92–98. [Google Scholar]
- Lin, P.; Huang, W.; Tang, N.; Xiao, F.; Li, Y. Understanding the low temperature properties of Terminal Blend hybrid asphalt through chemical and thermal analysis methods. Constr. Build. Mater. 2018, 169, 543–552. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Zhang, Z.; Wei, L.; Li, J.; Yuan, D.; Wu, X.; Mao, Z. High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate. Appl. Sci. 2019, 9, 3563. https://doi.org/10.3390/app9173563
Jia M, Zhang Z, Wei L, Li J, Yuan D, Wu X, Mao Z. High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate. Applied Sciences. 2019; 9(17):3563. https://doi.org/10.3390/app9173563
Chicago/Turabian StyleJia, Meng, Zengping Zhang, Long Wei, Jiange Li, Dongdong Yuan, Xingjiao Wu, and Zhiyong Mao. 2019. "High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate" Applied Sciences 9, no. 17: 3563. https://doi.org/10.3390/app9173563
APA StyleJia, M., Zhang, Z., Wei, L., Li, J., Yuan, D., Wu, X., & Mao, Z. (2019). High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate. Applied Sciences, 9(17), 3563. https://doi.org/10.3390/app9173563