Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Electroplating Process
2.2. Morphological Characterization Methods
2.3. Nanoindentation Tests
3. Results and Discussion
3.1. Characterization of Coatings
3.2. Characterization of the Mechanical Behavior
3.3. FEA-Supported Indentation Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sahoo, P.; Das, S.K. Tribology of electroless nickel coatings—A review. Mater. Des. 2011, 32, 1760–1775. [Google Scholar] [CrossRef]
- Sudagar, J.; Lian, J.; Sha, W. Electroless nickel, alloy, composite and nano coatings—A critical review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Vijayaraghavan, L. Influence of Nano Al2O3 Particles on the Adhesion, Hardness and Wear Resistance of Electroless Ni-P Coatings. Int. J. Mater. Mech. Manuf. 2016, 4, 106–110. [Google Scholar]
- Ankita Sharma, A.; Singh, K. Corrosion and wear study of Ni-P-PTFE-Al2O3 coating: The effect of heat treatment. Cent. Eur. J. Eng. 2014, 4, 80–89. [Google Scholar]
- Agarwala, R.C.; Agarwala, V. Electroless alloy/composite coatings: A review. Sadhana 2003, 28 Pt 3 & 4, 475–493. [Google Scholar] [CrossRef]
- Chandrasekar, M.S. Malathy Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications. Electrochim. Acta 2008, 53, 3313–3322. [Google Scholar] [CrossRef]
- Vafaei-Makhsoos, E.; Thomas, E.L.; Toth, L.E. Electron microscopy of crystalline and amorphous Ni-P electrodeposited films: In-situ crystallization of an amorphous solid. Metall. Trans. A 1978, 9, 1449–1460. [Google Scholar] [CrossRef]
- Hu, C.C.; Bai, A. Influences of the phosphorus content on physicochemical properties of nickel-phosphorus deposits. Mater. Chem. Phys. 2002, 77, 215–225. [Google Scholar] [CrossRef]
- Breadael, E.; Blanpain, B.; Celis, J.P.; Roos, J.R. On the Amorphous and Crystalline State of Electrodeposited Nickel-Phosphorus Coatings. J. Electrochem. Soc. 1994, 141, 294–299. [Google Scholar] [CrossRef]
- Daly, B.P.; Barry, F.J. Electrochemical nickel–phosphorus alloy formation. Int. Mater. Rev. 2003, 48, 326–338. [Google Scholar] [CrossRef]
- Keong, K.G.; Sha, W.; Malinov, S. Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content. Alloys Compd. 2002, 334, 192–199. [Google Scholar] [CrossRef]
- Bukaluk, A. Auger electron spectroscopy studies of interdiffusion in electrodeposited amorphous Ni-P alloys. Surf. Interface Anal. 1994, 22, 18–21. [Google Scholar] [CrossRef]
- Chang, L.; Kao, P.W.; Chen, C.H. Strengthening mechanisms in electrodeposited Ni–P alloys with nanocrystalline grains. Scr. Mater. 2007, 56, 713–716. [Google Scholar] [CrossRef]
- Bai, A.; Hu, C.C. Effects of annealing temperatures on the physicochemical properties of. nickel-phosphorous deposits. Mater. Chem. Phys. 2003, 79, 49–57. [Google Scholar] [CrossRef]
- Bonino, J.P.; Hotellaz, S.B.; Bories, C.; Pouderoux, P.; Rousset, A. Thermal stability of electrodeposited Ni-P alloys. J. Appl. Electrochem. 1997, 27, 1193–1197. [Google Scholar] [CrossRef]
- Apachitei, I.; Tichelaar, F.D.; Duszczyk, J.; Katgerman, L. The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP–SiC coatings. Surf. Coat. Technol. 2002, 149, 263–278. [Google Scholar] [CrossRef]
- Alexis, J.; Etcheverry, B.; Beguin, J.D.; Bonino, J.P. Structure, morphology and mechanical properties of electrodeposited composite coatings Ni–P/SiC. Mater. Chem. Phys. 2010, 120, 244–250. [Google Scholar] [CrossRef]
- Zoikis-Karathanasis, A.; Pavlatou, E.A.; Spyrellis, N. Pulse electrodeposition of Ni–P matrix composite coatings reinforced by SiC particles. J. Alloys Compd. 2010, 494, 396–403. [Google Scholar] [CrossRef]
- Madej, M.; Ozimina, D.; Piwonski, I. The influence of tribochemical reactions of antiwear additives on heterogeneous surface layers in boundary lubrication. Tribol. Lett. 2006, 22, 135–141. [Google Scholar] [CrossRef]
- Alirezaei, S.; Monirvaghefi, S.M.; Salehi, M.; Saatchi, A.; Kargosha, M. Effect of alumina content on wear behaviour of Ni–P–Al2O3 electroless composite coatings. Surf. Eng. 2005, 21, 60–66. [Google Scholar] [CrossRef]
- Winowlin Jappes, J.T.; Ramamoorthy, B.; Kesavan Nair, P. Novel approaches on the study of wear performance of electroless Ni–P/diamond composite deposites. J. Mater. Process. Technol. 2009, 209, 1004–1010. [Google Scholar] [CrossRef]
- Novaνk, M.; Vojtech, D.; Vitu, T. Influence of heat treatment on tribological properties of electroless Ni–P and Ni–P–Al2O3 coatings on Al–Si casting alloy. Appl. Surf. Sci. 2010, 256, 2956–2960. [Google Scholar] [CrossRef]
- Zhou, Q.; Shao, Z.; He, C.; Shao, Z.; Cai, Q.; Gao, W. Impact of surfactants on electroless deposition Ni–P–Nano-Al2O3 composite coating. J. Chin. Soc. Corros. Prot. 2007, 27, 27–30. [Google Scholar]
- Dong, D.; Chen, X.H.; Xiao, W.T.; Yang, G.B.; Zhang, P.Y. Preparation and properties of electroless Ni–P–SiO2 composite coatings. Appl. Surf. Sci. 2009, 255, 7051–7055. [Google Scholar] [CrossRef]
- Liu, T. Study on corrosive wear resistance of a Ni–P–Cr2O3 composite electroless plating with low-content phosphor in NaOH. Run Hua Yu Mi Feng 2006, 4, 90–91. [Google Scholar]
- Shibli, S.M.A.; Jabeera, B.; Anupama, R.I. Incorporation of nano zinc oxide for improvement of electroless nickel plating. Appl. Surf. Sci. 2006, 253, 1644–1648. [Google Scholar] [CrossRef]
- Sarret, M.; Muller, C.; Amell, A. Electroless Ni-P micro- and nano-composite coatings. Surf. Coat. Technol. 2006, 201, 389–395. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, H.; Shen, B.; Liu, L.; Hu, W. The friction and wear of electroless Ni–P matrix with PTFE and/or SiC particles composite. Tribol. Int. 2006, 39, 553–559. [Google Scholar] [CrossRef]
- Vojtech, D. Properties of hard Ni–P–Al2O3 and Ni–P–SiC coatings on Al-aased casting alloys. Mater. Manuf. Process. 2009, 24, 754–757. [Google Scholar] [CrossRef]
- Araghi, A.; Paydar, M.H. Electroless deposition of Ni–P–B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance. Mater. Des. 2010, 31, 3095–3099. [Google Scholar] [CrossRef]
- Hamid, Z.A.; El Badry, S.A.; Aal, A.A. Electroless deposition and characterization of Ni–P–WC composite alloys. Surf. Coat. Technol. 2007, 201, 5948–5953. [Google Scholar] [CrossRef]
- Wang, L.Y.; Tu, J.P.; Chen, W.X.; Wang, Y.C.; Liu, X.K.; Olk, C.; Cheng, D.H.; Zhang, X.B. Friction and wear behavior of electrodeless Ni-based CNT composite coating. Wear 2003, 254, 1289–1293. [Google Scholar] [CrossRef]
- Shi, Y.L.; Yang, Z.; Xu, H.; Li, M.K.; Li, H.L. Preparation of electroplated Ni-P-ultrafine diamond, Ni-P-carbon nanotubes composite coatings and their corrosion properties. J. Mater. Sci. 2004, 39, 5809–5815. [Google Scholar] [CrossRef]
- Petrova, M.; Noncheva, Z.; Dobreva, E. Electroless deposition of diamond powder dispersed nickel-phosphorus coatings on steel substrate. Trans. Inst. Met. Finish. 2011, 89, 89–94. [Google Scholar] [CrossRef]
- Matsukawa, K.; Satoh, K.; Mohri, N. Effect of wear particles on tribological properties of electroless nickel–phosphorus plating dispersed with PTFE and boron nitride. Jpn. J. Tribol. 2008, 53, 181–193. [Google Scholar]
- Balaraju, J.N.; Rajam, K.S. Electroless Deposition and Characterization of High Phosphorus Ni-P-Si3N4 Composite Coatings. Int. J. Electrochem. Sci. 2007, 2, 747–761. [Google Scholar]
- Balaraju, J.N.; Sankara Narayanan, T.S.N.; Seshadri, S.K. Electroless Ni–P composite coatings. J. Appl. Electrochem. 2003, 33, 807–816. [Google Scholar] [CrossRef]
- Zou, T.Z.; Tu, J.P.; Zhang, S.C.; Chen, L.M.; Wang, Q.; Zhang, L.L.; He, D.N. Friction and wear properties of electroless Ni–P–(IF–MoS2) composite coatings in humid air and vacuum. Mater. Sci. Eng. A 2006, 426, 162–168. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.C.; Walsh, F.C.; Chiu, Y.-L.; Reed, P.A.S. Self-lubricating Ni-P-MoS2 composite coatings. Surf. Coat. Technol. 2016, 307, 926–934. [Google Scholar] [CrossRef]
- Ramalho, A.; Miranda, J.C. Friction and wear of electroless Ni-P and Ni-P + PTFE coatings. Wear 2005, 259, 828–834. [Google Scholar] [CrossRef]
- Srinivasan, K.N.; John, S. Studies on electroless nickel-PTFE composite coatings. Surf. Eng. 2005, 21, 156–160. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, B.; Liu, L.; Hu, W. The tribological behaviour of electroless Ni–P–Gr–SiC composite. Wear 2006, 261, 201–207. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L.; Shen, B.; Hu, W. Study of self-lubricant Ni–P–PTFE–SiC composite coating. J. Mater. Sci. 2005, 40, 5057–5059. [Google Scholar] [CrossRef]
- Mansour, G.; Tzetzis, D.; Bouzakis, K.D. A nanomechanical approach on the measurement of the elastic properties of epoxy reinforced carbon nanotube nanocomposites. Tribol. Ind. 2013, 35, 190–199. [Google Scholar]
- Tzetzis, D.; Mansour, G.; Tsiafis, I.; Pavlidou, E. Nanoindentation Measurements of Fumed Silica Epoxy Reinforced Nanocomposites. J. Reinf. Plast. Compos. 2013, 32, 163–173. [Google Scholar] [CrossRef]
- Mansour, G.; Tzetzis, D. Nanomechanical characterization of hybrid multiwall carbon nanotube and fumed silica epoxy nanocomposites. Polym. Plast. Technol. Eng. 2013, 52, 1054–1062. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Shakoor, A.; Kahraman, R.; Lu, W.; Yan, B.; Gao, W. Ni-P-TiO2 Composite Coatings on Copper Produced by Sol Enhanced Electroplating. Int. J. Electrochem. Sci. 2014, 9, 4384–4393. [Google Scholar]
- Alexis, J.; Gaussens, C.; Etcheverry, B.; Bonino, J.P. Development of nickel phosphorus coatings containing micro particles of talc phyllosilicates. Mater. Chem. Phys. 2013, 137, 723–733. [Google Scholar] [CrossRef]
- Wang, Q.; Callisti, M.; Miranda, A.; McKay, B.; Deligkiozi, I.; Milickovic, T.K.; Zoikis-Karathanasis, A.; Hrissagis, K.; Magagnin, L.; Polcar, T. Evolution of structural, mechanical and tribological properties of Ni–P/MWCNT coatings as a function of annealing temperature. Surf. Coat. Technol. 2016. [Google Scholar] [CrossRef]
- Birlik, I.; Azem, A.; Funda, N.; Toparli, M.; Celik, E.; Koc Delice, T.; Yildirim, S.; Bardakcioglu, O.; Dikici, T. Preparation and characterization of ni–TiO2 nanocomposite coatings Produced by electrodeposition Technique. Front. Mater. 2016, 3, 46. [Google Scholar] [CrossRef]
- Tien, S.K.; Duh, J.G.; Chen, Y.I. The influence of thermal treatment on the microstructure and hardness in electroless Ni-P-W deposit. Thin Solid Films 2004, 469, 333–338. [Google Scholar] [CrossRef]
- Islam, M.; Azhar, M.R.; Khalid, Y.; Khan, R.; Abdo, H.S.; Dar, M.A.; Oloyede, O.R.; Burleigh, T.D. Electroless Ni-P/SiC Nanocomposite Coatings With Small Amounts of SiC Nanoparticles for Superior Corrosion Resistance and Hardness. J. Mater. Eng. Perform. 2015, 24, 4835–4843. [Google Scholar] [CrossRef]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the Mechanical Properties of Epoxy Silica Nanocomposites through FEA-Supported Evaluation of Ball Indentation Test Results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and dynamic behavior of fused filament fabrication 3D printed polyethylene terephthalate glycol reinforced with carbon fibers. Polym.-Plast. Technol. Eng. 2018, 57, 1715–1725. [Google Scholar] [CrossRef]
- Mansour, M.; Tsongas, K.; Tzetzis, D. Measurement of the mechanical and dynamic properties of 3D printed polylactic acid reinforced with graphene. Polym.-Plast. Technol. Eng. 2019, 58, 1234–1244. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic-Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Nava, D.; Dávalos, C.E.; Martínez-Hernández, A.; Manríquez, F.; Meas, Y.; Ortega-Borges, R.; Pérez-Bueno, J.J.; Trejo, G. Effects of heat treatment on the tribological and corrosion properties of electrodeposited Ni-Palloys. Int. J. Electrochem. Sci. 2013, 8, 2670–2681. [Google Scholar]
- Bouzakis, K.D.; Michailidis, N.; Erkens, G. Thin hard coatings stress strain curve determination through a FEM supported evaluation of nanoindentation test results. Surf. Coat. Technol. 2001, 142–144, 102–109. [Google Scholar] [CrossRef]
- Lichinchi, M.; Lenardi, C.; Haupt, J.; Vitali, R. Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 1998, 312, 240–248. [Google Scholar] [CrossRef] [Green Version]
Specimen | Elastic Modulus [GPa] | |
---|---|---|
Nanoindentation Test | FEA | |
Ni-P | 70 | 76 |
Ni-P HT | 95 | 100 |
Ni-P/SiC | 114 | 120 |
Ni-P/SiC HT | 125 | 140 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsongas, K.; Tzetzis, D.; Karantzalis, A.; Banias, G.; Exarchos, D.; Ahmadkhaniha, D.; Zanella, C.; Matikas, T.; Bochtis, D. Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings. Appl. Sci. 2019, 9, 2901. https://doi.org/10.3390/app9142901
Tsongas K, Tzetzis D, Karantzalis A, Banias G, Exarchos D, Ahmadkhaniha D, Zanella C, Matikas T, Bochtis D. Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings. Applied Sciences. 2019; 9(14):2901. https://doi.org/10.3390/app9142901
Chicago/Turabian StyleTsongas, Konstantinos, Dimitrios Tzetzis, Alexander Karantzalis, George Banias, Dimitrios Exarchos, Donya Ahmadkhaniha, Caterina Zanella, Theodore Matikas, and Dionysis Bochtis. 2019. "Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings" Applied Sciences 9, no. 14: 2901. https://doi.org/10.3390/app9142901
APA StyleTsongas, K., Tzetzis, D., Karantzalis, A., Banias, G., Exarchos, D., Ahmadkhaniha, D., Zanella, C., Matikas, T., & Bochtis, D. (2019). Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings. Applied Sciences, 9(14), 2901. https://doi.org/10.3390/app9142901