Modulus Stretch-Based Circular SAR Imaging with Contour Thinning
Abstract
:1. Introduction
2. Analysis of Imaging Algorithms
2.1. Backprojection Algorithm
2.2. Contour Thinning Analysis
2.3. Contour Thinning Algorithm
- The Nfft-point IFFT is performed on the echo data received at each slow time to obtain an M-point inverse transform sequence, and then cyclically shifts with the FFTshift(•) function [11].
- The real coordinates corresponding to each pixel on the image are calculated, and the corresponding to each pixel is calculated [11].
- Linear interpolation is performed on to obtain the estimated values of the corresponding IFFT transformation at all points, and the sub-imaging data at each time is obtained by multiplying by the data the compensation term [11].
- Let denote the value of the synthetic aperture. The sub-images of all in the range of the synthetic aperture are superimposed, and then the modulus is stretched for each sub-aperture image. Finally, all the sub-aperture images are superimposed to obtain the final imaging results.
3. Experimental Results
3.1. Simulated Data Imaging
3.1.1. Single Line Target Imaging
3.1.2. Double-Line Target Imaging
3.2. Vehicle Imaging in Gotcha Dataset
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, Z.; Wang, H.; Zhang, G.; Yang, S. Spotlight SAR images restoration based on tomography model. In Proceedings of the 2009 Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2009, Xian, China, 26–30 October 2009; pp. 1060–1063. [Google Scholar]
- Peng, Z.; Zhang, J.; Meng, F.; Dai, J. Time-Frequency Analysis of SAR Image Based on Generalized S-Transform. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA2009), Zhangjiajie, China, 11–12 April 2009; Volume 1, pp. 556–559. [Google Scholar]
- Peng, Z.; Liu, S.; Tian, G.; Chen, Z.; Tao, T. Bridge detection and recognition in remote sensing SAR images using pulse coupled neural networks. In Proceedings of the 7th International Symposium on Neural Networks, ISNN 2010, Shanghai, China, 6–9 June 2010; Volume 67, pp. 311–320. [Google Scholar]
- Tao, T.; Peng, Z.; Yang, C.; Wei, F.; Liu, L. Targets detection in SAR image used coherence analysis based on S-transform. In Proceedings of the International Conference on Electric and Electronics, EEIC 2011, Nanchang, China, 20–22 June 2011; Volume 98, pp. 1–9. [Google Scholar]
- Soumekh, M. Reconnaissance with slant plane circular SAR imaging. IEEE Trans. Image Process. 1996, 5, 1252–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantalloube, H.M.J.; Koeniguer, E.C.; Oriot, H. High resolution SAR imaging along circular trajectories. In Proceedings of the International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 850–853. [Google Scholar]
- Casteel, J.C.H.; Gorham, L.A.; Minardi, M.J.; Scarborough, S.M.; Naidu, K.D.; Majumder, U.K. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment. In Algorithms for Synthetic Aperture Radar Imagery XIV; International Society for Optics and Photonics: Orlando, FL, USA, 2007. [Google Scholar]
- Ertin, E.; Austin, C.D.; Sharma, S.; Moses, R.L.; Potter, L.C. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures. In Proceedings of the Defense and Security Symposium, Orlando, FL, USA, 10–11 April 2007. [Google Scholar]
- Tan, W.X.; Wang, Y.P.; Wen, H.; Wu, Y.R.; Li, N.J.; Hu, C.F.; Zhang, L.X. Circular SAR experiment for human body imaging. In Proceedings of the 1st Asian And Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 90–93. [Google Scholar]
- Dungan, K.E.; Potter, L.C.; Blackaby, J.; Nehrbass, J. Discrimination of civilian vehicles using wide-angle SAR. In Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, USA, 17–18 March 2008. [Google Scholar]
- Gorham, L.A.; Moore, L.J. SAR image formation toolbox for MATLAB. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 8–9 April 2010. [Google Scholar]
- Dungan, K.E.; Ash, J.N.; Nehrbass, J.W.; Parker, J.T.; Gorham, L.A.; Scarborough, S.M. Wide angle SAR data for target discrimination research. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 25–26 April 2012. [Google Scholar]
- Gianelli, C.D.; Xu, L. Focusing, imaging, and atr for the gotcha 2008 wide angle sar collection. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 1–2 May 2013. [Google Scholar]
- Zhang, X.K.; Zhang, Y.H.; Jiang, J.S. Circular SAR imaging approximated by spotlight processing. In Proceedings of the 7th International Symposium on Antennas, Propagation and EM Theory, Guilin, China, 26–29 October 2006; pp. 1–4. [Google Scholar]
- Zhang, X.K. Study on Imaging Mechanism and Algorithm of High-Resolution Circular Synthetic Aperture Radar. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2007. [Google Scholar]
- Lin, Y.; Hong, W.; Tan, W.X.; Wang, Y.P.; Wu, Y.R. Interferometric Circular SAR Method for Three-Dimensional Imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1026–1030. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, W.; Tan, W.X.; Wu, Y.R. Extension of Range Migration Algorithm to Squint Circular SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 651–655. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, W.; Tan, W.X.; Wang, Y.P.; Xiang, M.S. Airborne Circular Sar Imaging: Results at P-Band. In Proceedings of the International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5594–5597. [Google Scholar]
- Hong, W. Progress in Circular SAR Imaging Technique. J. Radars 2012, 1, 124–135. [Google Scholar] [CrossRef]
- Teng, F.; Hong, W.; Lin, Y. Aspect Entropy Extraction Using Circular SAR Data and Scattering Anisotropy Analysis. Sensors 2019, 19, 346. [Google Scholar] [CrossRef] [PubMed]
- Ponce, O.; Prats, P.; Rodriguez-Cassola, M.; Scheiber, R.; Reigber, A. Processing of Circular Sar Trajectories with Fast Factorized Back-Projection. In Proceedings of the International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3692–3695. [Google Scholar]
- Liao, Y.; Zhou, S.; Xing, M.D.; Bao, Z. An Imaging Algorithm for Airborne Circular Scanning SAR Based on the Method of Series Reversion. J. Electron. Inf. Technol. 2012, 34, 2587–2593. [Google Scholar] [CrossRef]
- Liao, Y.; Xing, M.D.; Zhang, L.; Bao, Z. A novel modified Omega-K algorithm for circular trajectory scanning SAR imaging using series reversion. EURASIP J. Adv. Signal Process. 2013, 2013, 64. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhang, L.; Xing, M.D.; Bao, Z. Expediting back-projection algorithm for circular SAR imaging. Electron. Lett. 2015, 51, 785–786. [Google Scholar] [CrossRef]
- Farhadi, M.; Jie, C. Distributed compressive sensing for multi-baseline circular SAR image formation. In Proceedings of the International Conference on Imaging Systems and Techniques, IST 2017, Beijing, China, 18–20 October 2017. [Google Scholar]
- Izumi, Y.; Demirci, S.; Bin, B.; Mohd, Z.; Watanabe, T.; Sumantyo, J.T.S. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements. Appl. Sci. 2017, 7, 368. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, Y.; Hong, W.; Yu, L.J. Adaptive imaging of anisotropic target based on circular-SAR. Electron. Lett. 2016, 52, 1406–1407. [Google Scholar] [CrossRef]
- Chen, L.; An, D.; Huang, X.; Zhou, Z. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data. IEEE Trans. Image Process. 2017, 26, 5545–5554. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Shi, S.; An, D.; Wang, G.; Wang, G.; Xiao, H.; Huang, X.; Zhou, Z.; Xie, C.; Wang, F.; et al. Fast Factorized Backprojection Algorithm for One-Stationary Bistatic Spotlight Circular SAR Image Formation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1494–1510. [Google Scholar] [CrossRef]
- Sun, C.; Wang, B.; Fang, Y.; Song, Z.; Wang, S. Multichannel and Wide-Angle SAR Imaging Based on Compressed Sensing. Sensors 2017, 17, 295. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Pi, Y.; Yang, X. Wide-Angle CSAR Imaging Based on the Adaptive Subaperture Partition Method in the Terahertz Band. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 165–173. [Google Scholar] [CrossRef]
- Wu, B.; Gao, Y.; Ghasr, M.T.; Zoughi, R. Resolution-Based Analysis for Optimizing Subaperture Measurements in Circular SAR Imaging. IEEE Trans. Instrum. Meas. 2018, 67, 2804–2811. [Google Scholar] [CrossRef]
- Hao, J.; Li, J.; Pi, Y. Three-Dimensional Imaging of Terahertz Circular SAR with Sparse Linear Array. Sensors 2018, 18, 2477. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, B.; Wu, Y. Accurate Wide Angle SAR Imaging Based on LS-CS-Residual. Sensors 2019, 19, 490. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Zhang, P.; He, Y. Infrared Small Target Detection via Nonnegativity-Constrained Variational Mode Decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1700–1704. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Peng, Z.; Wu, J.; Wang, Z. Infrared Image Super-Resolution Reconstruction Based on Quaternion Fractional Order Total Variation with Lp Quasinorm. Appl. Sci. 2018, 8, 1864. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared small target detection based on non-convex optimization with Lp-norm constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, T.; Liu, Y.; Li, M.; Peng, Z. Infrared Dim Target Detection Using Shearlet’s Kurtosis Maximization under Non-Uniform Background. Symmetry 2019, 11, 723. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Peng, Z.; Zheng, K. Modulus Stretch-Based Circular SAR Imaging with Contour Thinning. Appl. Sci. 2019, 9, 2728. https://doi.org/10.3390/app9132728
Hu R, Peng Z, Zheng K. Modulus Stretch-Based Circular SAR Imaging with Contour Thinning. Applied Sciences. 2019; 9(13):2728. https://doi.org/10.3390/app9132728
Chicago/Turabian StyleHu, Rongchun, Zhenming Peng, and Kelong Zheng. 2019. "Modulus Stretch-Based Circular SAR Imaging with Contour Thinning" Applied Sciences 9, no. 13: 2728. https://doi.org/10.3390/app9132728
APA StyleHu, R., Peng, Z., & Zheng, K. (2019). Modulus Stretch-Based Circular SAR Imaging with Contour Thinning. Applied Sciences, 9(13), 2728. https://doi.org/10.3390/app9132728