Atom Probe Tomography for Catalysis Applications: A Review
Abstract
:1. Introduction
2. Atom Probe Tomography
2.1. Atom Probe Tomography: Basic Principles
2.2. Atom Probe Tomography: Specimen Preparation
2.3. Latest Developments: Environmental Cells for APT
- -
- cleaning the specimen by field evaporation (with regular APT analysis);
- -
- transferring, under UHV conditions, the specimen to the reaction cell;
- -
- isolating the cell from the rest of the instrument;
- -
- applying reactive conditions (gases, T, time, …);
- -
- pumping the reaction cell;
- -
- transferring, under UHV conditions, the specimen back to the analysis chamber.
3. Case Studies
3.1. Model Catalysts as Tips—Focus on the Surface
3.1.1. Pt-Based Alloys
- -
- the surface segregation behavior is facet-dependent due to different surface free energies and different diffusion processes;
- -
- the surface segregation behavior is temperature-dependent, allowing observation of Rh surface segregation below a threshold temperature, and Rh surface depletion above this temperature;
- -
- some oxygen-bearing molecules (NO, O2 and N2O) cause surface segregation, whereas CO induces very little segregation, suggesting that the presence of atomic oxygen drives surface segregation in Pt-Rh;
- -
- the competitive segregation effects due to different surface properties can be studied by exposing the specimen to different gases simultaneously or one after another, for example CO preventing the build-up of oxide layer and limiting the extent of segregation.
3.1.2. Au-Based Alloys
Adsorbate-Induced Segregation on Pd-Au
Bulk Diffusion vs. Surface Diffusion on Au-Ag
3.2. Model Catalysts as Tips—Focus on the Surface and Bulk
3.2.1. Engineering the Surface Composition of Pt-Based Alloys
3.2.2. Region-Specific Analysis of Pt-Based Catalysts
3.3. Catalysts as Unsupported Nanoparticles
3.3.1. Imaging Core-Shell Ag@Pd Nanoparticles—Electrophoresis Method
3.3.2. Imaging Core-Shell Au@Ag Nanoparticles—Embedding Method
3.3.3. Imaging Other Encapsulated Nanomaterials
3.4. Catalysts as Supported Nanoparticles
3.4.1. Oxide-Supported Nanoparticles
3.4.2. Carbon-Supported Nanoparticles
3.5. Catalysts as Powder
3.6. Catalysts as Porous Materials—Nanoporous Au
3.7. Catalysts as Porous Materials—Zeolites
- -
- the sample preparation, due to heterogeneous distribution of elements at the microscale;
- -
- the proper assignment of mass spectra peaks, due to the complex fragmentation patterns of carbon-based materials and the lack of fingerprint fragmentation patterns in APT;
- -
- the limitation of spatial resolution, blurring the atomic positions;
- -
- the proper statistical data analysis.
4. Conclusions and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Kaltner, W.; Lorenz, K.; Schillinger, B.; Jentys, A.; Lercher, J.A. Using tomography for exploring complex structured emission control catalysts. Catal. Lett. 2010, 134, 24–30. [Google Scholar] [CrossRef]
- Devred, F.; Reinhart, G.; Iles, G.N.; van der Klugt, B.; Adkins, N.J.; Bakker, J.W.; Nieuwenhuys, B.E. Synchrotron X-ray microtomography of Raney-type nickel catalysts prepared by gas atomization: Effect of microstructure on catalytic performance. Catal. Today 2011, 163, 13–19. [Google Scholar] [CrossRef]
- Goulas, K.A.; Dert, S.; Dietrich, P.; Johnson, G.R.; Grippo, A.; Wang, Y.C.; Gross, E. X-ray tomography measurements identify structure-reactivity correlations in catalysts for oxygenates coupling reactions. Catal. Today 2018. [Google Scholar] [CrossRef]
- Sheppard, T.L.; Price, S.W.T.; Benzi, F.; Baier, S.; Klumpp, M.; Dittmeyer, R.; Schwieger, W.; Grunwaldt, J.-D. In situ multimodal 3D chemical imaging of a hierarchically structured core@shell catalyst. J. Am. Chem. Soc. 2017, 139, 7855–7863. [Google Scholar] [CrossRef]
- Van Hoof, A.J.F.; Filot, I.A.W.; Friedrich, H.; Hensen, E.J.M. Reversible restructuring of silver particles during ethylene epoxidation. ACS Catal. 2018, 8, 11794–11800. [Google Scholar] [CrossRef] [PubMed]
- Fam, Y.; Sheppard, T.L.; Diaz, A.; Scherer, T.; Holler, M.; Wang, W.; Wang, D.; Brenner, P.; Wittstock, A.; Grunwaldt, J.-D. Correlative multiscale 3D imaging of a hierarchical nanoporous gold catalyst by electron, ion and X-ray nanotomography. ChemCatChem 2018, 10, 2858–2867. [Google Scholar] [CrossRef]
- Li, T.; Wu, H.; Ihli, J.; Ma, Z.; Krumeich, F.; Bomans, P.H.H.; Sommerdijk, N.A.J.M.; Friedrich, H.; Patterson, J.P.; van Bokhoven, J.A. Cryo-TEM and electron tomography reveal leaching-induced pore formation in ZSM-5 zeolite. J. Mater. Chem. A 2019, 7, 1442–1446. [Google Scholar] [CrossRef] [Green Version]
- Barroo, C.; Bagot, P.A.J.; Smith, G.D.W.; Visart de Bocarmé, T. Investigating nano-structured catalysts at the atomic scale by field ion microscopy and atom probe tomography. In Atomically-Precise Methods for Synthesis of Solid Catalysts; Hermans, S., Visart de Bocarmé, T., Eds.; RSC Catalysis Series; The Royal Society of Chemistry: Cambridge, UK, 2015; pp. 248–295. [Google Scholar]
- Müller, E. Field Ion Microscopy Principles and Applications; American Elsevier Pub.: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Miller, M.K.; Cerezo, A.; Hetherington, M.G.G.; Smith, G.D.W. Atom Probe Field Ion Microscopy; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Suchorski, Y.; Imbihl, R.; Medvedev, V.K. Compatibility of field emitter studies of oscillating surface reactions with single crystal measurements: Catalytic CO oxidation on Pt. Surf. Sci. 1998, 401, 392–399. [Google Scholar] [CrossRef]
- Suchorski, Y.; Beben, J.; Imbihl, R.; James, E.W.; Liu, D.-J.; Evan, J.W. Fluctuations and critical phenomena in catalytic CO oxidation on nanoscale Pt facets. Phys. Rev. B 2001, 63, 165417. [Google Scholar] [CrossRef] [Green Version]
- Suchorski, Y.; Drachsel, W.; Gorodetskii, V.V.; Medvedev, V.K.; Weiss, H. Lifted reconstruction as a feedback mechanism in the oscillating CO oxidation on Pt nanofacets: Microscopic evidences. Surf. Sci. 2006, 600, 1579–1585. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Bär, T.; Kruse, N. Field ion microscopy study of the structural changes in Rh crystals during the reaction of oxygen-hydrogen gas mixtures. Surf. Sci. 2000, 454–456, 320–325. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Bär, T.; Kruse, N. In situ dynamic study of hydrogen oxidation on rhodium. Ultramicroscopy 2001, 89, 75–82. [Google Scholar] [CrossRef]
- McEwen, J.-S.; Gaspard, P.; Visart de Bocarmé, T.; Kruse, N. Nanometric chemical clocks. Proc. Natl. Acad. Sci. USA 2009, 106, 3006–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tol, M.F.H.; Gielbert, A.; Nieuwenhuys, B.E. Oscillatory behaviour of the reduction of NO by H2 over Rh. Catal. Lett. 1992, 16, 297–309. [Google Scholar] [CrossRef]
- Cobden, P.D.; de Wolf, C.A.; Smirnov, M.Y.; Makeev, A.; Nieuwenhuys, B.E. Non-linear processes on Pt, Rh, Pd, Ir and Ru surfaces during the NO-hydrogen reactions. J. Mol. Catal. A Chem. 2000, 158, 115–128. [Google Scholar] [CrossRef]
- Gorodetskii, V.V.; Elokhin, V.I.; Bakker, J.W.; Nieuwenhuys, B.E. Field electron and field ion microscopy studies of chemical wave propagation in oscillatory reactions on platinum group metals. Catal. Today 2005, 105, 183–205. [Google Scholar] [CrossRef]
- Barroo, C.; De Decker, Y.; Visart de Bocarmé, T.; Kruse, N. Emergence of chemical oscillations from nanosized target patterns. Phys. Rev. Lett. 2016, 117, 144501. [Google Scholar] [CrossRef]
- Barroo, C.; De Decker, Y.; Jacobs, L.; Visart de Bocarmé, T. Nonlinear behavior during NO2 hydrogenation on a nanosized Pt-Rh catalyst sample. Appl. Surf. Sci. 2017, 412, 564–570. [Google Scholar] [CrossRef]
- Barroo, C.; De Decker, Y.; Visart de Bocarmé, T. NO2 hydrogenation on Rh catalysts: Bifurcations and oscillations at the nanoscale. J. Phys. Chem. C 2017, 121, 17235–17243. [Google Scholar] [CrossRef]
- Barroo, C.; Visart de Bocarmé, T.; De Decker, Y.; Kruse, N. Surface reactions investigated at the nanoscale by field emission techniques: Nonlinear dynamics of the catalytic hydrogenation of NO and NO2 over platinum crystallites. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 1st ed.; Wandelt, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2.1, pp. 251–260. [Google Scholar]
- Ahmad, M.; Tsong, T.T. Surface segregation and diffusion kinetics study of a PtIr alloy using the time of flight atom probe field ion microscope. Appl. Phys. Lett. 1984, 44, 40–42. [Google Scholar] [CrossRef]
- Ng, Y.S.; Tsong, T.T.; McLane, S.B., Jr. Atom-probe FIM investigation of surface segregation in Ni-Cu, stainless steel 410 and Pt-Au alloys. Surf. Sci. 1979, 84, 31–53. [Google Scholar]
- Tsong, T.T.; Ng, Y.S.; McLane, S.B., Jr. Surface segregation of a Pt-Au alloy: An atom probe field ion microscope investigation. J. Chem. Phys. 1980, 73, 1464–1468. [Google Scholar] [CrossRef]
- Tsong, T.T.; Ren, D.M.; Ahmad, M. Atomic-layer by atomic-layer compositional depth profiling: Surface segregation and impurity cosegregation of Pt-Rh and Pt-Ru alloys. Phys. Rev. B 1988, 38, 7428–7435. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Tsong, T.T. Compositional variations in the near surface layers, an atom probe study of cosegregation of sulfur in Pt-Rh and Pt-Ir alloys. J. Chem. Phys. 1985, 83, 388–396. [Google Scholar] [CrossRef]
- Hono, K.; Iwata, T.; Nakamura, M.; Pickering, H.W.; Kamiya, I.; Sakurai, T. Atom-probe study of the initial stage of selective oxidation of Ni from the Cu-Ni alloy system. Surf. Sci. 1991, 245, 132–149. [Google Scholar] [CrossRef]
- Cocke, D.L.; Chuah, G.K.; Kruse, N.; Block, J.H. Copper oxidation and surface copper oxide stability investigated by pulsed field desorption mass spectrometry. Appl. Surf. Sci. 1995, 84, 153–161. [Google Scholar] [CrossRef]
- Cocke, D.L.; Abend, G.; Block, J.H.; Kruse, N. Oxidation of ruthenium studied by pulsed field desorption mass spectrometry. Langmuir 1985, 1, 507–509. [Google Scholar] [CrossRef]
- Tsong, T.T.; Ng, Y.S.; McLane, S.B., Jr. Surface segregation of NiCu alloy in nitrogen and oxygen: An atom probe field ion microscope study. J. Appl. Phys. 1980, 51, 6189–6191. [Google Scholar] [CrossRef]
- Kellogg, G.L. Pulsed laser atom-probe study of the dissociation of CO on molybdenum. Surf. Sci. 1981, 111, 205–213. [Google Scholar] [CrossRef]
- Hren, J.; Kellogg, G.L. Field-ion microscopy and atom-probe mass spectroscopy of sulfur on the (111) plane of nickel. Surf. Sci. 1984, 147, 349–355. [Google Scholar] [CrossRef]
- Kruse, N.; Abend, G.; Block, J.H. Interaction of cyanogen with Pt single crystal surfaces, studied by pulsed field desorption mass spectrometry. Z. Phys. Chem. 1985, 144, 1–8. [Google Scholar] [CrossRef]
- Block, J.H.; Kruse, N. Chemical surface reactions of CO on the atomic scale: Investigations by field ion microscopy and mass spectrometry. React. Kinet. Catal. Lett. 1987, 35, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.B.; Abend, G.; Block, J.H. Formation of nickel subcarbonyls from nickel and carbon monoxide. Surf. Sci. 1983, 126, 392–396. [Google Scholar] [CrossRef]
- Chau, T.-D.; Visart de Bocarmé, T.; Kruse, N. Formation of N2O and (NO)2 during NO adsorption on Au 3D crystals. Catal. Lett. 2004, 98, 85–97. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Chau, T.-D.; Kruse, N. Dynamic interaction of CO/H2O mixtures with gold nanocrystals: Real-time imaging and local probing. Surf. Sci. 2006, 600, 4205–4210. [Google Scholar] [CrossRef]
- Lambeets, S.V.; Barroo, C.; Owczarek, S.; Jacobs, L.; Genty, E.; Gilis, N.; Kruse, N.; Visart de Bocarmé, T. Adsorption and hydrogenation of CO2 on Rh nanosized crystals: Demonstration of the role of interfacet oxygen spillover and comparative studies with O2, N2O, and CO. J. Phys. Chem. C 2017, 121, 16238–16249. [Google Scholar] [CrossRef]
- Chuah, G.K.; Kruse, N.; Schmidt, W.A.; Block, J.H.; Abend, G. Methanol adsorption and decomposition on rhodium. J. Catal. 1989, 119, 342–353. [Google Scholar] [CrossRef]
- Kruse, N. Surface reaction kinetics on the atomic scale: Studies by means of pulsed field desorption mass spectrometry. Mater. Sci. Eng. A 1999, 270, 75–82. [Google Scholar] [CrossRef]
- Che, F.; Gray, J.T.; Ha, S.; Kruse, N.; Scott, S.L.; McEwen, J.-S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal. 2018, 8, 5153–5174. [Google Scholar] [CrossRef]
- Kellogg, G.L. The oxidation of rhodium field-emitter surfaces during CO oxidation reaction. J. Catal. 1985, 92, 167–172. [Google Scholar] [CrossRef]
- Kellogg, G.L. Direct observations of surface chemical and structural changes resulting from the CO oxidation reaction on rhodium. J. Vac. Sci. Technol. A 1986, 4, 1419–1423. [Google Scholar] [CrossRef]
- Kellogg, G.L. Initial stages of oxide formation on rhodium field emitters. Phys. Rev. Lett. 1985, 54, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Kruse, N. Nitric oxide interaction with Rh metal: Kinetics of elemental steps and reaction with carbon monoxide. J. Mol. Catal. A Chem. 2000, 163, 79–89. [Google Scholar] [CrossRef]
- Kruse, N. Time resolved reaction studies on the atomic scale: NO and CO adsorption on stepped Rh surfaces. J. Vac. Sci. Technol. A 1990, 8, 3432–3436. [Google Scholar] [CrossRef]
- Liu, W.; Bao, C.L.; Ren, D.M.; Tsong, T.T. Methanation on Rh surfaces at low pressure and low temperature: A pulsed-laser imaging atom-probe study. Surf. Sci. 1987, 180, 153–168. [Google Scholar] [CrossRef]
- Bao, C.L.; Tsong, T.T. Methanation on Ir surfaces at low gas pressure and temperature. A study by pulsed-laser field desorption time-of-flight mass spectroscopy. Surf. Sci. 1988, 201, 371–384. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Kruse, N. Field emission techniques for studying surface reactions: Applying them to NO-H2 interaction with Pd tips. Ultramicroscopy 2011, 111, 376–380. [Google Scholar] [CrossRef]
- Barroo, C.; Moors, M.; Visart de Bocarmé, T. Imaging and chemical probing catalytic processes using field emission techniques: Study of NO hydrogenation on Pd and Pd-Au catalysts. Catal. Sci. Technol. 2017, 7, 5249–5256. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Beketov, G.; Kruse, N. Water formation from O2 and H2 on Rh tips: Studies by field ion microscopy and pulsed field desorption mass spectrometry. Surf. Interface Anal. 2004, 36, 522–527. [Google Scholar] [CrossRef]
- Block, J.H.; Abend, G.; Kruse, N.; Weimer, J.J. Determination of reaction intermediates of heterogeneous catalytic reactions by field pulse desorption dedicated to Prof. John Happel on the occasion of his 80th birthday. Chem. Eng. Comm. 1989, 83, 103–109. [Google Scholar] [CrossRef]
- Moors, M.; Visart de Bocarmé, T.; Kruse, N. Surface reaction kinetics studied with nanoscale lateral resolution. Catal. Today 2007, 124, 61–70. [Google Scholar] [CrossRef]
- Moors, M.; Amara, H.; Visart de Bocarmé, T.; Bichara, C.; Ducastelle, F.; Kruse, N.; Charlier, J.-C. Early stages in the nucleation process of carbon nanotubes. ACS Nano 2009, 3, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Moors, M.; Visart de Bocarmé, T.; Kruse, N. C2H2 interaction with Ni nanocrystals: Towards a better understanding of carbon nanotubes nucleation in CVD synthesis. Ultramicroscopy 2009, 109, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Müller, E.W.; Panitz, J.A.; Brooks McLane, S. The atom-probe field ion microscope. Rev. Sci. Instrum. 1968, 39, 83–86. [Google Scholar] [CrossRef]
- Gault, B.; Moody, M.P.; Cairney, J.M.; Ringer, S.P. Atom Probe Microscopy; Hull, H., Jagadish, C., Osgood, R.M., Jr., Parisi, J., Wang, Z.M., Eds.; Springer Series in Materials Science; Springer: New York, NY, USA, 2012; Volume 160. [Google Scholar]
- Larson, D.J.; Prosa, T.J.; Ulfig, R.M.; Geiser, B.P.; Kelly, T.F. Local Electrode Atom Probe Tomography. A User’s Guide; Springer: New York, NY, USA, 2013. [Google Scholar]
- Miller, M.K.; Forbes, R.G. Atom-Probe Tomography: The Local Electrode Atom Probe; Springer: New York, NY, USA, 2014. [Google Scholar]
- Lefebvre-Ulrikson, W.; Vurpillot, F.; Sauvage, X. Atom Probe Tomography. Put Theory into Practice; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ceguerra, A.V.; Breen, A.J.; Stephenson, L.T.; Felfer, P.J.; Araullo-Peters, V.J.; Liddicoat, P.V.; Cui, X.-Y.; Yao, L.; Haley, D.; Moody, M.P.; et al. The rise of computational techniques in atom probe microscopy. Curr. Opin. Solid State Mater. Sci. 2013, 17, 224–235. [Google Scholar] [CrossRef]
- Larson, D.J.; Gault, B.; Geiser, B.P.; De Geuser, F.; Vurpillot, F. Atom probe tomography spatial reconstruction: Status and directions. Curr. Opin. Solid State Mater. Sci. 2013, 17, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Vurpillot, F.; Lefebvre, W.; Cairney, J.M.; Oberdorfer, C.; Geiser, B.P.; Rajan, K. Advanced volume reconstruction and data mining methods in atom probe tomography. MRS Bull. 2016, 41, 46–52. [Google Scholar] [CrossRef]
- Vurpillot, F.; Parviainen, S.; Djurabekova, F.; Zanuttini, D.; Gervais, B. Simulation tools for atom probe tomography: A path for diagnosis and treatment of image degradation. Mater. Charact. 2018, 146, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.-Y.; Ringer, S.P. On the nexus between atom probe microscopy and density functional theory simulations. Mater. Charact. 2018, 146, 347–358. [Google Scholar] [CrossRef]
- Seidnam, D.N. Three-dimensional atom-probe tomography: Advances and applications. Annu. Rev. Mater. Res. 2007, 37, 127–158. [Google Scholar]
- Kelly, T.F.; Larson, D.J.; Thompson, K.; Alvis, R.L.; Bunton, J.H.; Olson, J.D.; Gorman, B.P. Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 2007, 37, 681–727. [Google Scholar] [CrossRef]
- Marquis, E.A.; Bachhav, M.; Chen, Y.; Dong, Y.; Gordon, L.M.; McFarland, A. On the current role of atom probe tomography in materials characterization and materials science. Curr. Opin. Solid State Mater. Sci. 2013, 17, 217–223. [Google Scholar] [CrossRef]
- Larson, D.J.; Prosa, T.J.; Perea, D.E.; Inoue, K.; Mangelinck, D. Atom probe tomography of nanoscale electronic materials. MRS Bull. 2016, 41, 30–34. [Google Scholar] [CrossRef]
- Stiller, K.; Thuvander, M.; Povstugar, I.; Choi, P.P.; Andrén, H.-O. Atom probe tomography of interfaces in ceramic films and oxide scales. MRS Bull. 2016, 41, 35–39. [Google Scholar] [CrossRef]
- Blum, T.B.; Darling, J.R.; Kelly, T.F.; Larson, D.J.; Moser, D.E.; Perez-Huerta, A.; Prosa, T.J.; Reddy, S.M.; Reinhard, D.A.; Saxey, D.W.; et al. Best practices for reporting atom probe analysis of geological materials. In Microstructural Geochronology: Planetary Records down to Atom Scale; Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M., Tait, K., Eds.; Geophysical Monograph Series; American Geophysical Union and John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Miller, M.K.; Forbes, R.G. Atom probe tomography. Mater. Charact. 2009, 60, 461–469. [Google Scholar] [CrossRef]
- Miller, M.K.; Russell, K.F.; Thompson, K.; Alvis, R.; Larson, D.J. Review of atom probe FIB-based specimen preparation methods. Microsc. Microanal. 2007, 13, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, A.; Perea, D.E.; Liu, J.; Gordon, L.M.; Prosa, T.J.; Parikh, P.; Diercks, D.R.; Meher, S.; Kolli, R.P.; Meng, Y.S.; et al. Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int. Mater. Rev. 2017, 63, 68–101. [Google Scholar] [CrossRef]
- Roussel, M.; Talbot, E.; Gourbilleau, F.; Pareige, P. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography. Nanoscale Res. Lett. 2011, 6, 164. [Google Scholar] [CrossRef]
- Felfer, P.J.; Alam, T.; Ringer, S.P.; Cairney, J.M. A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc. Res. Tech. 2012, 75, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Prosa, T.J.; Larson, D.J. Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc. Microanal. 2017, 23, 194–209. [Google Scholar] [CrossRef]
- Schreiber, D.K.; Perea, D.E.; Ryan, J.V.; Evans, J.E.; Vienna, J.D. A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy 2018, 194, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.-I.; Isheim, D.; Seidman, D.N. Systematic approaches for targeting an atom-probe tomography sample fabricated in a thin TEM specimen: Correlative structural, chemical and 3-D reconstruction analyses. Ultramicroscopy 2018, 184, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Mouton, I.; Katnagallu, S.; Makineni, S.K.; Cojocaru-Mirédin, O.; Schwarz, T.; Stephenson, L.T.; Raabe, D.; Gault, B. Calibration of atom probe tomography reconstructions through correlation with electron micrographs. Microsc. Microanal. 2019, 25, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Babinsky, K.; De Kloe, R.; Clemens, H.; Primig, S. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 2014, 144, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.P.; Chen, Y.; Prosa, T.J.; Larson, D.J. Implementing transmission electron backscatter diffraction for atom probe tomography. Microsc. Microanal. 2016, 22, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Bagot, P.A.J.; Visart de Bocarmé, T.; Cerezo, A.; Smith, G.D.W. 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: Instrumentation. Surf. Sci. 2006, 600, 3028–3035. [Google Scholar] [CrossRef]
- Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results. Ultramicroscopy 2014, 141, 16–21. [Google Scholar] [CrossRef]
- Haley, D.; McCarroll, I.; Bagot, P.A.J.; Cairney, J.M.; Moody, M.P. A gas-phase reaction cell for modern atom probe systems. Microsc. Microanal. 2019, 25, 410–417. [Google Scholar] [CrossRef]
- Bagot, P.A.J.; Cerezo, A.; Smith, G.D.W.; Visart de Bocarmé, T.; Godfrey, T.J. Automobile exhaust catalysis at the atomic scale: Atom-probe investigations on platinum alloys. Surf. Interface Anal. 2007, 39, 172–177. [Google Scholar] [CrossRef]
- Bagot, P.A.J.; Cerezo, A.; Smith, G.D.W. 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces II: Results on Pt and Pt-Rh. Surf. Sci. 2007, 601, 2245–2255. [Google Scholar] [CrossRef]
- Bagot, P.A.J.; Cerezo, A.; Smith, G.D.W. 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces III: Ternary alloys—NO on Pt-Rh-Ru and Pt-Rh-Ir. Surf. Sci. 2008, 602, 1381–1391. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Moors, M.; Kruse, N.; Atanasov, I.S.; Hou, M.; Cerezo, A.; Smith, G.D.W. Surface segregation of Au-Pd alloys in UHV and reactive environments: Quantification by a catalytic atom probe. Ultramicroscopy 2009, 109, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Gilis, N.; Jacobs, L.; Barroo, C.; Visart de Bocarmé, T. Surface segregation in Au-Ag alloys investigated by atom probe tomography. Top. Catal. 2018, 61, 1437–1448. [Google Scholar] [CrossRef]
- Moody, M.P.; Vella, A.; Gerstl, S.S.A.; Bagot, P.A.J. Advances in atom probe tomography instrumentation: Implications for materials research. MRS Bull. 2016, 41, 40–45. [Google Scholar] [CrossRef]
- Perea, D.E.; Gerstl, S.S.A.; Chin, J.; Hirschi, B.; Evans, J.E. An environmental transfer hub for multimodal atom probe tomography. Adv. Struct. Chem. Imaging 2017, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, L.T.; Szczepaniak, A.; Mouton, I.; Rusitzka, K.A.K.; Breen, A.J.; Tezins, U.; Sturm, A.; Vogel, D.; Chang, Y.; Kontis, P.; et al. The Laplace Project: An integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions. PLoS ONE 2018, 13, e0209211. [Google Scholar] [CrossRef] [PubMed]
- Bagot, P.A.J. Fundamental surface science studies of automobile exhaust catalysis. Mater. Sci. Technol. 2004, 20, 679–694. [Google Scholar] [CrossRef]
- Kruse, N.; Visart de Bocarmé, T. Heterogeneous catalysis and high electric fields. In Handbook of Heterogeneous Catalysis, 2nd ed.; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 870–895. [Google Scholar]
- Bagot, P.A.J.; Kreuzer, H.J.; Cerezo, A.; Smith, G.D.W. A model for oxidation-driven surface segregation and transport on Pt-alloys studied by atom probe tomography. Surf. Sci. 2011, 605, 1544–1549. [Google Scholar] [CrossRef]
- Nga, N.L.T.; Potvin, C.; Djéga-Mariadassou, G.; Delannoy, L.; Louis, C. Catalytic reduction of nitrogen monoxide by propene in the presence of excess oxygen over gold-based ceria catalyst. Top. Catal. 2007, 42–43, 91–94. [Google Scholar] [CrossRef]
- Arve, K.; Adam, J.; Simakova, O.; Čapek, L.; Eränen, K.; Murzin, D.Y. Selective catalytic reduction of NOx over nano-sized gold catalysts supported on alumina and titania and over bimetallic gold-silver catalysts supported on alumina. Top. Catal. 2009, 52, 1762–1765. [Google Scholar] [CrossRef]
- More, P.M.; Nguyen, D.L.; Granger, P.; Dujardin, C.; Dongare, M.K.; Umbarkar, S.B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Appl. Catal. B Environ. 2015, 174, 145–156. [Google Scholar] [CrossRef]
- Genty, E.; Jacobs, L.; Visart de Bocarmé, T.; Barroo, C. Dynamic processes on gold-based catalysts followed by environmental microscopies. Catalysts 2017, 7, 134. [Google Scholar] [CrossRef]
- Hilaire, L.; Légaré, P.; Holl, Y.; Maire, G. Interaction of oxygen and hydrogen with Pd-Au alloys: An AES and XPS study. Surf. Sci. 1981, 103, 125–140. [Google Scholar] [CrossRef]
- Zugic, B.; Wang, L.; Heine, C.; Zakharov, D.N.; Lechner, B.A.J.; Stach, E.A.; Biener, J.; Salmeron, M.; Madix, R.J.; Friend, C.M. Dynamic restructuring drives catalytic activity on nanoporous gold—Silver alloy catalysts. Nat. Mater. 2017, 16, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Biener, J.; Biener, M.M.; Madix, R.J.; Friend, C.M. Nanoporous gold: Understanding the origin of the reactivity of a 21st century catalyst made by pre-columbian technology. ACS Catal. 2015, 5, 6263–6270. [Google Scholar] [CrossRef]
- Personick, M.L.; Zugic, B.; Biener, M.M.; Biener, J.; Madix, R.J.; Friend, C.M. Ozone-activated nanoporous gold: A stable and storable material for catalytic oxidation. ACS Catal. 2015, 5, 4237–4241. [Google Scholar] [CrossRef]
- Wang, L.-C.; Personick, M.L.; Karakalos, S.; Fushimi, R.; Friend, C.M.; Madix, R.J. Active sites for methanol partial oxidation on nanoporous gold catalysts. J. Catal. 2016, 344, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, L.; Barroo, C.; Gilis, N.; Lambeets, S.V.; Genty, E.; Visart de Bocarmé, T. Structure reactivity relationships during N2O hydrogenation avec Au-Ag alloys: A study by field emission techniques. Appl. Surf. Sci. 2018, 435, 914–919. [Google Scholar] [CrossRef]
- Guisbiers, G.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Velázquez-Salazar, J.J.; Mendoza-Perez, R.; Robledo-Torres, J.A.; Rodriguez-Lopez, J.-L.; Montejano-Carrizales, J.M.; Whetten, R.L.; José-Yacamán, M. Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: Synthesis, properties, and segregation rules. ACS Nano 2016, 10, 188–198. [Google Scholar] [CrossRef]
- Gong, H.R. Electronic structures and related properties of Ag-Au bulks and surfaces. Mater. Chem. Phys. 2010, 123, 326–330. [Google Scholar] [CrossRef]
- Li, T.; Marquis, E.A.; Bagot, P.A.J.; Tsang, S.C.; Smith, G.D.W. Characterization of oxidation and reduction of a platinum-rhodium alloy by atom-probe tomography. Catal. Today 2011, 175, 552–557. [Google Scholar] [CrossRef]
- Li, T.; Bagot, P.A.J.; Marquis, E.A.; Edman Tsang, S.C.; Smith, G.D.W. Characterization of oxidation and reduction of a palladium-rhodium alloy by atom-probe tomography. J. Phys. Chem. C 2012, 116, 4760–4766. [Google Scholar] [CrossRef]
- Li, T.; Bagot, P.A.J.; Marquis, E.A.; Edman Tsang, S.C.; Smith, G.D.W. Atomic engineering of platinum alloy surfaces. Ultramicroscopy 2013, 132, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Bagot, P.A.J.; Marquis, E.A.; Edman Tsang, S.C.; Smith, G.D.W. Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J. Phys. Chem. C 2012, 116, 17633–17640. [Google Scholar] [CrossRef]
- Morita, M.; Karasawa, M.; Asaka, T.; Owari, M. The analysis of metal catalyst nanoparticle by atom probe tomography. E-J. Surf. Sci. Nanotech. 2014, 2, 145–148. [Google Scholar] [CrossRef]
- Bagot, P.A.J.; Kruska, K.; Haley, D.; Carrier, X.; Marceau, E.; Moody, M.P.; Smith, G.D.W. Oxidation and surface segregation of a Pt-Pd-Rh alloy catalyst. J. Phys. Chem. C 2014, 118, 26130–26138. [Google Scholar] [CrossRef]
- Van den Berg, A.W.C.; Arean, C.O. Materials for hydrogen storage: Current research trends and perspectives. Chem. Commun. 2008, 668–681. [Google Scholar] [CrossRef]
- Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials. Top. Catal. 2010, 53, 902–914. [Google Scholar] [CrossRef]
- Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R.I. Unusually active palladium-based catalysts for the electrooxidation of formic acid. J. Power Sources 2006, 157, 78–84. [Google Scholar] [CrossRef]
- Tedsree, K.; Li, T.; Jones, S.; Chan, C.W.A.; Yu, K.M.K.; Bagot, P.A.J.; Marquis, E.A.; Smith, G.D.W.; Tsang, S.C.E. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat. Nanotechnol. 2011, 6, 302–307. [Google Scholar] [CrossRef]
- Li, T.; Bagot, P.A.J.; Christian, E.; Theobald, B.R.C.; Sharman, J.D.B.; Ozkaya, D.; Moody, M.P.; Edman Tsang, S.C.; Smith, G.D.W. Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography. ACS Catal. 2014, 4, 695–702. [Google Scholar] [CrossRef]
- Yu, K.M.K.; Tong, W.; West, A.; Cheung, K.; Li, T.; Smith, G.D.W.; Guo, Y.; Tsang, S.C.E. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 2012, 3, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felfer, P.; Li, T.; Eder, K.; Galinski, H.; Magyar, A.P.; Bell, D.C.; Smith, G.D.W.; Kruse, N.; Ringer, S.P.; Cairney, J.M. New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy 2015, 159, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felfer, P.; Benndorf, P.; Masters, A.; Maschmeyer, T.; Cairney, J.M. Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11190–11193. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, A.; Yang, X.; Zhang, T.; Mou, C.-Y.; Su, D.-S.; Li, J. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on Inert supports. Chem. Mater. 2009, 21, 410–418. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Yang, Q.; Joyce, D.E.; Saranu, S.; Hughes, G.M.; Varambhia, A.; Moody, M.P.; Bagot, P.A.J. A combined approach for deposition and characterization of atomically engineered catalyst nanoparticles. Catal. Struct. React. 2015, 1, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Castro, T.; Li, Y.Z.; Reifenberger, R.; Choi, E.; Park, S.B.; Andres, R.P. Studies of individual nanometer-sized metallic clusters using scanning tunneling microscopy, field emission, and field ion microscopy. J. Vac. Sci. Technol. A 1989, 7, 2845–2849. [Google Scholar] [CrossRef]
- Lovall, D.; Buss, M.; Andres, R.P.; Reifenberger, R. Resolving the atomic structure of supported nanometer-sized Au clusters. Phys. Rev. B 1998, 58, 889–896. [Google Scholar] [CrossRef]
- Castro, T.; Reifenberger, R.; Choi, E.; Andres, R.P. A field emission technique to measure the melting temperature of individual nanometer-sized clusters. Surf. Sci. 1990, 234, 43–52. [Google Scholar] [CrossRef]
- Sun, Z.; Hazut, O.; Yerushalmi, R.; Lauhon, L.J.; Seidman, D.N. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy 2018, 184, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F. Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy 2015, 159, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, J.Y.; Ahn, J.-P.; Choi, P.-P. Fabrication of atom probe tomography specimens from nanoparticles using a fusible Bi-In-Sn alloy as an embedding medium. Microsc. Microanal. 2019, 25, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kang, P.W.; Park, O.O.; Seol, J.-B.; Ahn, J.-P.; Lee, J.Y.; Choi, P.-P. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy 2018, 190, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.; Wagner, J.B. Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 2012, 18, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.; Wagner, J.B. Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 2014, 4, 1673–1685. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Chau, T.-D.; Kruse, N. The interaction of CO–O2 gas mixtures with Au tips: In situ imaging and local chemical probing. Surf. Interface Anal. 2007, 39, 166–171. [Google Scholar] [CrossRef]
- Chen, M.S.; Goodman, D.W. The structure of catalytically active Au on titania. Science 2004, 306, 252–255. [Google Scholar] [CrossRef]
- Landman, U.; Yoon, B.; Zhang, C.; Heiz, U.; Arenz, M. Factors in gold nanocatalysis: Oxidation of CO in the non-scalable size regime. Top. Catal. 2007, 44, 145–158. [Google Scholar] [CrossRef]
- Aguilar-Guerrero, V.; Gates, B.C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 2011, 50, 10144–10147. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Yoshida, H.; Kamiuchi, N. Correlation of catalytic activity with the morphology change of supported Au nanoparticles in gas. Surf. Sci. 2017, 659, 16–19. [Google Scholar] [CrossRef]
- McCaroll, I.; Scherrer, B.; Felfer, P.; Moody, M.P.; Cairney, J.M. Interpreting atom probe data from oxide-metal interfaces. Microsc. Microanal. 2018, 24, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Bachhav, M.; Pawar, G.; Vurpillot, F.; Danoix, R.; Danoix, F.; Hannoyer, B.; Dong, Y.; Marquis, E. Interpreting the presence of an additional oxide layer in analysis of metal oxides-metal interfaces in atom probe tomography. J. Phys. Chem. C 2019, 123, 1313–1319. [Google Scholar] [CrossRef]
- Kolli, R.P. Atom probe tomography: A review of correlative analysis of interfaces and precipitates in metals and alloys. JOM 2018, 70, 1725–1735. [Google Scholar] [CrossRef]
- Satyanarayana, V.N.T.K.; Shutthanandan, V.; Prosa, T.J.; Adusumilli, P.; Arey, B.; Buxbaum, A.; Wang, Y.C.; Tessner, T.; Ulfig, R.; Wang, C.M.; et al. Three-dimensional chemical imaging of embedded nanoparticles using atom probe tomography. Nanotechnology 2012, 23, 215704. [Google Scholar]
- Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P.Z.; Kayani, A.; Hess, W.P.; et al. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO. Nanotechnology 2013, 24, 095707. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Shutthanandan, V.; Zhang, Y.; Thevuthasan, S. Atomic resolution imaging of Au nanocluster dispersed in TiO2, SrTiO3, and MgO. J. Am. Ceram. Soc. 2005, 88, 3184–3191. [Google Scholar] [CrossRef]
- Devaraj, A.; Colby, R.; Shutthanandan, V.; Subramanian, V.; Wang, C.M.; Perea, D.E.; Thevuthasan, S. Characterization of embedded metallic nanoparticles in oxides by cross-coupling aberration-corrected STEM and atom probe tomography. Microsc. Microanal. 2012, 18, 912–913. [Google Scholar] [CrossRef]
- Devaraj, A.; Colby, R.; Vurpillot, F.; Thevuthasan, S. Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J. Phys. Chem. Lett. 2014, 5, 1361–1367. [Google Scholar] [CrossRef]
- Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles. J. Appl. Phys. 2016, 120, 164308. [Google Scholar] [CrossRef]
- Kwak, C.; Park, T.J.; Suh, D.J. Effects of sodium addition on the performance of PtCo/Al2O3 catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels. Appl. Catal. A 2005, 278, 181–186. [Google Scholar] [CrossRef]
- Barroo, C.; Akey, A.J.; Shan, J.; Flytzani-Stephanopoulos, M.; Bell, D.C. Sample preparation and analysis of aggregated ‘single atom alloy’ nanoparticles by atom probe tomography. Microsc. Microanal. 2017, 23, 1906–1907. [Google Scholar] [CrossRef]
- Choi, P.-P.; Kwon, Y.-S.; Kim, J.-S.; Al-Kassab, T. Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique. J. Electron. Microsc. 2007, 56, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.-P.; Al-Kassab, T.; Kwon, Y.-S.; Kim, J.-S.; Kirchheim, R. Application of focused ion beam to atom probe tomography specimen preparation from mechanically alloyed powders. Microsc. Microanal. 2007, 13, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Mridha, S.; Jaeger, D.L.; Arora, H.S.; Banerjee, R.; Mukherjee, S. Atomic distribution in catalytic amorphous metals. J. Nanomater. 2015, 25, 632138. [Google Scholar] [CrossRef]
- Larde, R.; Bran, J.; Jean, M.; Le Breton, J.M. Nanoscale characterization of powder materials by atom probe tomography. Powder Technol. 2011, 208, 260–265. [Google Scholar] [CrossRef]
- Wu, F.; Bellon, P.; Melmed, A.J.; Lusby, T.A. Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM. Acta Mater. 2001, 49, 453–461. [Google Scholar] [CrossRef]
- Wu, F.; Bellon, P.; Lau, M.L.; Lavernia, E.J.; Lusby, T.A.; Melmed, A.J. A new approach to preparing tips for atom probe field ion microscopy from powder materials. Mater. Sci. Eng. A 2002, 327, 20–23. [Google Scholar] [CrossRef]
- Wu, F.; Isheim, D.; Bellon, P.; Seidman, D.N. Nanocomposites stabilized by elevated-temperature ball milling of Ag50Cu50 powders: An atom probe tomographic study. Acta Mater. 2006, 54, 2605–2613. [Google Scholar] [CrossRef]
- Bell, D.C.; Magyar, A.P.; Graham, A.C.; Baram, M. Microencapsulation method for atom probe analysis of powders. Microsc. Microanal. 2013, 19, 954–955. [Google Scholar] [CrossRef]
- Xiang, Y.; Chitry, V.; Liddicoat, P.; Felfer, P.; Cairney, J.; Ringer, S.; Kruse, N. Long-chain terminal alcohols through catalytic CO hydrogenation. J. Am. Chem. Soc. 2013, 135, 7114–7117. [Google Scholar] [CrossRef] [PubMed]
- Schweicher, J.; Bundhoo, A.; Kruse, N. Hydrocarbon chain lengthening in catalytic CO hydrogenation: Evidence for a CO-insertion mechanism. J. Am. Chem. Soc. 2012, 134, 16135–16138. [Google Scholar] [CrossRef] [PubMed]
- Kuang, T.; Lyu, S.; Liu, S.; Zhang, Y.; Li, J.; Wang, G.; Wang, L. Controlled synthesis of cobalt nanocrystals on the carbon spheres for enhancing Fischer-Tropsch synthesis performance. J. Energy Chem. 2019, 33, 67–73. [Google Scholar] [CrossRef]
- Xiang, Y.; Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 2016, 7, 13058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, J.M.; Xiang, Y.; Collinge, G.; Perea, D.E.; Kovarik, L.; McEwen, J.-S.; Kruse, N. Characterization of CoCu- and CoMn-based catalysts for the Fischer-Tropsch reaction toward chain-lengthened oxygenates. Top. Catal. 2018, 61, 1016–1023. [Google Scholar] [CrossRef]
- Biener, J.; Wittstock, A.; Baumann, T.F.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface chemistry in nanoscale materials. Materials 2009, 2, 2404–2428. [Google Scholar] [CrossRef]
- Falcucci, G.; Succi, S.; Montessori, A.; Melchionna, S.; Prestininzi, P.; Barroo, C.; Bell, D.C.; Biener, M.M.; Biener, J.; Zugic, B.; et al. Mapping reactive flow patterns in monolithic nanoporous catalysts. Microfluids Nanofluid. 2016, 20, 105. [Google Scholar] [CrossRef]
- Fujita, T.; Guan, P.; McKenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780. [Google Scholar] [CrossRef]
- Juarez, T.; Biener, J.; Weissmüller, J.; Hodge, A.M. Nanoporous metals with structural hierarchy: A review. Adv. Eng. Mater. 2017, 19, 1700389. [Google Scholar] [CrossRef]
- Barroo, C.; Montemore, M.M.; Janvelyan, N.; Zugic, B.; Akey, A.J.; Magyar, A.P.; Ye, J.; Kaxiras, E.; Biener, J.; Bell, D.C. Macroscopic 3D nanoporosity formation by dry oxidation of AgAu alloys. J. Phys. Chem. C 2017, 121, 5115–5122. [Google Scholar] [CrossRef]
- Pfeiffer, B.; Erichsen, T.; Epler, E.; Volkert, C.A.; Trompenaars, P.; Nowak, C. Characterization of nanoporous materials with atom probe tomography. Microsc. Microanal. 2015, 21, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Barroo, C.; Magyar, A.P.; Bell, D.C. Catalysis and atom probe tomography: Recent progresses and future developments towards the analysis of nanoporous samples. Microsc. Microanal. 2015, 21, 855–856. [Google Scholar] [CrossRef]
- Barroo, C.; Janvelyan, N.; Zugic, B.; Magyar, A.P.; Akey, A.J.; Biener, J.; Friend, C.M.; Bell, D.C. Surface modifications during a catalytic reaction: A combined APT and FIB/SEM analysis of surface segregation. Microsc. Microanal. 2016, 22, 356–357. [Google Scholar] [CrossRef]
- El-Zoka, A.A.; Langelier, B.; Botton, G.A.; Newman, R.C. Enhanced analysis of nanoporous gold by atom probe tomography. Mater. Charact. 2017, 128, 269–277. [Google Scholar] [CrossRef]
- El-Zoka, A.A.; Langelier, B.; Korinek, A.; Botton, G.A.; Newman, R.C. Advances in nanoscale characterization of refined nanoporous gold. Electrochim. Acta 2018, 283, 611–618. [Google Scholar] [CrossRef]
- Herino, R.; Jan, P.; Bomchil, G. Nickel plating on porous silicon. J. Electrochem. Soc. 1985, 132, 2513–2514. [Google Scholar] [CrossRef]
- Tzaneva, B.R.; Naydenov, A.I.; Todorova, S.Z.; Videkov, V.H.; Milusheva, V.S.; Stefanov, P.K. Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion. Electrochim. Acta 2016, 191, 192–199. [Google Scholar] [CrossRef]
- Hakamada, M.; Hirashima, F.; Takahashi, M.; Nakazawa, T.; Mabuchi, M. Large-strain induced magnetic properties of Co electrodeposited on nanoporous Au. J. Appl. Phys. 2011, 109, 084315. [Google Scholar] [CrossRef]
- Mouton, I.; Printemps, T.; Grenier, A.; Gambacorti, N.; Pinna, E.; Tiddia, M.; Vacca, A.; Mula, G. Toward an accurate quantification in atom probe tomography reconstruction by correlative electron tomography on nanoporous materials. Ultramicroscopy 2017, 182, 112–117. [Google Scholar] [CrossRef]
- Jin, H.; Wang, X.; Parida, S.; Wang, K.; Seo, M.; Weissmuller, J. Nanoporous Au-Pt alloys as large strain electrochemical actuators. Nano Lett. 2010, 10, 187–194. [Google Scholar] [CrossRef]
- Lia, D.; Meng, F.; Wang, H.; Jiang, X.; Zhu, Y. Nanoporous AuPt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electrooxidation. Electrochim. Acta 2016, 190, 852–861. [Google Scholar] [CrossRef]
- El-Zoka, A.A.; Langelier, B.; Korinek, A.; Botton, G.A.; Newman, R.C. Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum. Nanoscale 2018, 10, 4904–4912. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Jia, X.; Wu, Z.; Choi, J.; Yip, A.C.K. Incorporating hierarchy into conventional zeolites for catalytic biomass conversions: A review. Catalysts 2019, 9, 127. [Google Scholar] [CrossRef]
- Shamzhy, M.; Opanasenko, M.; Concepción, P.; Martínez, A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. [Google Scholar] [CrossRef] [PubMed]
- Vogt, E.T.C.; Whiting, G.T.; Dutta Chowdhury, A.; Weckhuysen, B.M. Zeolites and zeotypes for oil and gas conversion. Adv. Catal. 2015, 58, 143–314. [Google Scholar]
- Beale, A.M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C.H.F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Peng, L.; Poplawsky, J.D.; Weckhuysen, B.M. Nanoscale chemical imaging of zeolites using atom probe tomography. Angew. Chem. Int. Ed. 2018, 57, 10422–10435. [Google Scholar] [CrossRef]
- Perea, D.E.; Arslan, I.; Liu, J.; Ristanović, Z.; Kovarik, L.; Arey, B.W.; Lercher, J.A.; Bare, S.R.; Weckhuysen, B.M. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 2015, 6, 7589. [Google Scholar] [CrossRef]
- Delucas, A.; Canizares, P.; Duran, A.; Carrero, A. Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity. Appl. Catal. A Gen. 1997, 154, 221–240. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Poplawsky, J.D.; Mazumder, B.; Attila, Ö.; Fu, D.; de Winter, D.A.M.; Meirer, F.; Bare, S.R.; Weckhuysen, B.M. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography. Angew. Chem. Int. Ed. 2016, 55, 11173–11177. [Google Scholar] [CrossRef] [PubMed]
- Aramburo, L.R.; Teketel, S.; Svelle, S.; Bare, S.R.; Arstad, B.; Zandbergen, H.W.; Olsbye, U.; de Groot, F.M.F.; Weckhuysen, B.M. Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. J. Catal. 2013, 307, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Nordvang, E.C.; Borodina, E.; Ruiz-Martínez, J.; Fehrmann, R.; Weckhuysen, B.M. Effects of coke deposits on the catalytic performance of large zeolite H-ZSM-5 crystals during alcohol-to-hydrocarbon reactions as investigated by a combination of optical spectroscopy and microscopy. Chem. Eur. J. 2015, 21, 17324–17335. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.E.; Peng, L.; Paioni, A.L.; Ehren, H.L.; Guo, W.; Mazumder, B.; de Winter, D.A.M.; Attila, Ö.; Fu, D.; Chowdhury, A.D.; et al. Isolating clusters of light elements in molecular sieves with atom probe tomography. J. Am. Chem. Soc. 2018, 140, 9154–9158. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, A.; Vijayakumar, M.; Bao, J.; Guo, M.F.; Derewinski, M.A.; Xu, Z.; Gray, M.J.; Prodinger, S.; Ramasamy, K.K. Discerning the location and nature of coke deposition from surface to bulk of spent zeolite catalysts. Sci. Rep. 2016, 6, 37586. [Google Scholar] [CrossRef] [PubMed]
- Danisi, R.M.; Schmidt, J.E.; Paioni, A.L.; Houben, K.; Poplawky, J.D.; Baldus, M.; Weckhuysen, B.M.; Vogt, E. Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. Phys. Chem. Chem. Phys. 2018, 20, 27766–27777. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, L.; Washton, N.M.; Kukkadapu, R.; Devaraj, A.; Wang, A.; Wang, Y.; Szanyi, J.; Peden, C.H.F.; Gao, F. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: A spectroscopic, microscopic, and kinetics study. ACS Catal. 2017, 7, 2458–2470. [Google Scholar] [CrossRef]
- Göltl, F.; Bulo, R.E.; Hafner, J.; Sautet, P. What makes copper-exchanged SSZ-13 zeolite efficient at cleaning car exhaust gases? J. Phys. Chem. Lett. 2013, 4, 2244–2249. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Haller, G.; Li, Y. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl. Catal. B Environ. 2017, 202, 346–354. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Oord, R.; Guo, W.; Poplawsky, J.D.; Weckhuysen, B.M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 2017, 8, 1666. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.E.; Ye, X.; van Ravenhorst, I.K.; Oord, R.; Shapiro, D.A.; Yu, Y.-S.; Bare, S.R.; Meirer, F.; Poplawsky, J.D.; Weckhuysen, B.M. Probing the location and speciation of elements in zeolites with correlated atom probe tomography and scanning transmission X-ray microscopy. ChemCatChem 2019, 11, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Kasian, O.; Cherevko, S.; Zhang, S.; Geiger, S.; Scheu, C.; Felfer, P.; Raabe, D.; Gault, B.; Mayrhofer, K.J.J. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 2018, 1, 300–305. [Google Scholar] [CrossRef]
- Eley, C.; Li, T.; Liao, F.; Fairclough, S.M.; Smith, J.M.; Smith, G.; Tsang, S.C.E. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angew. Chem. Int. Ed. 2014, 53, 7838–7842. [Google Scholar] [CrossRef] [PubMed]
- Bligaard, T.; Nørskov, J.K.; Dahl, S.; Matthiesen, J.; Christensen, C.H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217. [Google Scholar] [CrossRef]
- Lin, S.; Diercks, C.S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.; Yaghi, O.M.; et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, K.; Beberwyck, B.J.; Alivisatos, A.P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319–13325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Siahrostami, S.; Akey, A.J.; Li, Y.; Lu, Z.; Lattimer, J.; Hu, Y.; Stokes, C.; Gangishetty, M.; Chen, G.; et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroo, C.; Akey, A.J.; Bell, D.C. Atom Probe Tomography for Catalysis Applications: A Review. Appl. Sci. 2019, 9, 2721. https://doi.org/10.3390/app9132721
Barroo C, Akey AJ, Bell DC. Atom Probe Tomography for Catalysis Applications: A Review. Applied Sciences. 2019; 9(13):2721. https://doi.org/10.3390/app9132721
Chicago/Turabian StyleBarroo, Cédric, Austin J. Akey, and David C. Bell. 2019. "Atom Probe Tomography for Catalysis Applications: A Review" Applied Sciences 9, no. 13: 2721. https://doi.org/10.3390/app9132721
APA StyleBarroo, C., Akey, A. J., & Bell, D. C. (2019). Atom Probe Tomography for Catalysis Applications: A Review. Applied Sciences, 9(13), 2721. https://doi.org/10.3390/app9132721