Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays
Abstract
Featured Application
Abstract
1. Introduction
2. Design and Theory
3. Results and Discussion
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Skvortsov, L.A. Standoff detection of hidden explosives and cold and fire arms by terahertz time-domain spectroscopy and active spectral imaging (review). J. Appl. Spectrosc. 2014, 81, 725–749. [Google Scholar] [CrossRef]
- Zhong, H.; Redo-Sanchez, A.; Zhang, X.C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 2006, 14, 9130–9141. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int. J. Pharm. 2011, 417, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef] [PubMed]
- Vicarelli, L.; Vitiello, M.S.; Coquillat, D.; Lombardo, A.; Ferrari, A.C.; Knap, W. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871. [Google Scholar] [CrossRef]
- Al-Naib, I. Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 4700405. [Google Scholar] [CrossRef]
- Massiot, I.; Vandamme, N.; Bardou, N.; Dupuis, C.; Lemaitre, A.; Guillemoles, J.F.; Collin, S. Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 2014, 1, 878–884. [Google Scholar] [CrossRef]
- Sarma, R.; Campione, S.; Goldflam, M.; Shank, J.; Noh, J.; Smith, S.; Smith, S.; Ye, P.D.; Sinclair, M.; Klem, J.; et al. Low dissipation spectral filtering using a field-effect tunable III–V hybrid metasurface. Appl. Phys. Lett. 2018, 113, 06110. [Google Scholar] [CrossRef]
- Vasa, P.; Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photonics 2018, 5, 2–23. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Q.; Liu, K.; Chen, Z.; Pikwell-MacPherson, E. Terahertz microfluidic metamaterial biosensor for sensitive detection of small volume liquid samples. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 209–214. [Google Scholar] [CrossRef]
- Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K.; Moerner, W.E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657. [Google Scholar] [CrossRef]
- Ng, B.; Hanham, S.M.; Giannini, V.; Chen, Z.C.; Maier, S.A. Lattice resonances in antenna arrays for liquid sensing in the terahertz regime. Opt. Express 2011, 19, 14653–14661. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kang, J.H.; Kwon, J.; Lee, J.S.; Lee, S.; Woo, D.H.; Kim, J.H.; Song, C.S.; Park, Q.H.; Seo, M. Nano metamaterials for ultrasensitive terahertz biosensing. Sci. Rep. 2017, 7, 8146. [Google Scholar] [CrossRef]
- Serita, K.; Matsuda, E.; Okada, K.; Murakami, H.; Kawayama, I.; Tonouchi, M. Terahertz microfiludic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photonics 2018, 3, 051603. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Zhang, Z.; Liang, L. The terahertz electromagnetically inducede transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 2019, 126, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, L.; Chen, X.; Liu, C.; Tang, W.; Guo, C.; Wang, J.; Lu, W. Graphene-based broadband terahertz detector integrated with a square-spiral antenna. Opt. Lett. 2018, 43, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Castilla, S.; Terrés, B.; Autore, M.; Viti, L.; Li, J.; Nikitin, A.Y.; Vangelidis, I.; Watanabe, K.; Taniguchi, T.; Lidorikis, E.; et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 2019, 19, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Natrella, M.; Mitrofanov, O.; Mueckstein, R.; Graham, C.; Renaud, C.C.; Seeds, A.J. Modelling of surface waves on a THz antenna detected by a near-field probe. Opt. Express 2012, 20, 16023–16032. [Google Scholar] [CrossRef]
- Razzari, L.; Toma, A.; Shalaby, M.; Clerici, M.; Zaccaria, R.P.; Liberale, C.; Marras, S.; Al-Naib, I.A.I.; Das, G.; Angelis, F.D.; et al. Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. Opt. Express 2011, 19, 26088–26094. [Google Scholar] [CrossRef]
- Feuillet-Palma, C.; Todorov, Y.; Vasanelli, A.; Sirtori, C. Strong near field enhancement in THz nano-antenna arrays. Sci. Rep. 2013, 3, 1361. [Google Scholar] [CrossRef] [PubMed]
- Savoini, M.; Grubel, S.; Bagiante, S.; Sigg, H.; Feurer, T.; Beaud, P.; Johnson, S.L. THz near-field enhancement by means of isolated dipolar antennas: the effect of finite sample size. Opt. Express 2016, 24, 4552–4562. [Google Scholar] [CrossRef] [PubMed]
- Dykaar, D.R.; Greene, B.I.; Federici, J.F.; Levi, A.F.J.; Pfeiffer, L.N.; Kopf, R.F. Log-periodic antennas for pulsed terahertz radiation. Appl. Phys. Lett. 1991, 59, 262. [Google Scholar] [CrossRef][Green Version]
- Volkov, O.Y.; Divin, Y.Y.; Gubankov, V.N.; Gundareva, I.I.; Pavlovskiy, V.V. Josephson admittance spectroscopy of log-periodic antenna at the submillimeter wavelength range. J. Commun. Technol. Electron. 2009, 54, 1310–1314. [Google Scholar] [CrossRef]
- Singh, R.; Rockstuhl, C.; Menzel, C.; Meyrath, T.P.; He, M.; Giessen, H.; Lederer, F.; Zhang, W. Spiral-type terahertz antennas and the manifestation of the mushiake principle. Opt. Express 2009, 17, 9971–9980. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.L.; Newman, W.; Molesky, S.; Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 2012, 14, 063001. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Biaglow, T.; Strangi, G. Directional spontaneous emission enhancement in hyperbolic metamaterials. J. Appl. Phys. 2013, 114, 134306. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Kivshar, P.B.Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Giannini, V.; Berrier, A.; Maier, S.A.; Sanchez-Gil, J.A.; Rivas, J.G. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt. Express 2010, 18, 2797–2807. [Google Scholar] [CrossRef]
- Howells, S.; Schlie, L.A. Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl. Phys. Lett. 1996, 69, 550. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Chen, W.; Lu, Y.; Ruan, F.; Li, G. Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays. Appl. Sci. 2019, 9, 2524. https://doi.org/10.3390/app9122524
Cheng C, Chen W, Lu Y, Ruan F, Li G. Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays. Applied Sciences. 2019; 9(12):2524. https://doi.org/10.3390/app9122524
Chicago/Turabian StyleCheng, Cong, Wei Chen, Yuanfu Lu, Fangming Ruan, and Guangyuan Li. 2019. "Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays" Applied Sciences 9, no. 12: 2524. https://doi.org/10.3390/app9122524
APA StyleCheng, C., Chen, W., Lu, Y., Ruan, F., & Li, G. (2019). Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays. Applied Sciences, 9(12), 2524. https://doi.org/10.3390/app9122524