Volume Holographic Optical Elements as Solar Concentrators: An Overview
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Background
3. V-HOE Recording Process
4. Holographic Materials for Solar Concentrators
4.1. Silver Halide Emulsions
4.2. Dichromatic Gelatines
4.3. Photopolymers
5. V-HOE Based Solar Concentrators
5.1. Solar Concentrator and Spectral Splitting
5.2. Multiplexed Hologram
5.3. Holographic Solar Deflector
5.4. Cylindrical Holographic Lenses
5.5. Commercial and Space Holographic Concentrators
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Call, P.J. Overview of solar energy conversion technologies: Quantum processes and thermal processes. Mater. Sci. Eng. 1982, 53, 7–16. [Google Scholar] [CrossRef]
- Lyons, V.J. Power and propulsion at NASA Glenn Research Center: Historic perspective of major accomplishments. J. Aerosp. Eng. 2013, 26, 288–299. [Google Scholar] [CrossRef]
- Bloss, W.H.; Griesinger, M.; Reinhardt, E.R. Dispersive concentrating systems based on transmission phase holograms for solar applications. Appl. Opt. 1982, 21, 3739–3742. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.A.; Bianco, G.; Borbone, F.; Centore, R.; Striano, V.; Coppola, G. Volume holographic optical elements as solar concentrators. In Holographic Materials and Optical Systems; Naydenova, I., Ed.; InTechOpen: London, UK, 2017; pp. 27–50. ISBN 978-953-51-3038-3. [Google Scholar] [CrossRef]
- Ludman, J.; Riccobono, J.; Reinhand, N.; Semenova, I.; Martin, J.; Tai, W.; Li, X.L. Holographic solar concentrator for terrestrial photovoltaics. In Proceedings of the 1994 IEEE First World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 5–9 December 1994; IEEE: Waikoloa, HI, USA, 1994; pp. 1212–1215. [Google Scholar] [CrossRef]
- Imenes, A.G.; Mills, D.R. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review. Sol. Energy Mater. Sol. Cells 2004, 84, 19–69. [Google Scholar] [CrossRef]
- Bainier, C.; Hernandez, C.; Courjon, D. Solar concentrating systems using holographic lenses. Sol. Wind Technol. 1988, 5, 395–404. [Google Scholar] [CrossRef]
- Prismsolar. Prism Solar Technologies. Available online: http://www.prismsolar.com (accessed on 1 December 2018).
- Castro, J.M.; Zhang, D.; Myer, B.; Kostuk, R.K. Energy collection efficiency of holographic planar solar concentrators. Appl. Opt. 2010, 49, 858–870. [Google Scholar] [CrossRef]
- Chemisana, D.; Collados, M.V.; Quintanilla, M.; Atencia, J. Holographic lenses for building integrated concentrating photovoltaics. Appl. Energy 2013, 110, 227–235. [Google Scholar] [CrossRef]
- Dimroth, F.; Karam, N.H.; Ermer, J.H.; Haddad, M.; Colter, P.; Isshiki, T.; Yoon, H.; Cotal, H.L.; Joslin, D.E.; Krut, D.D.; et al. Next generation GaInP/GaInAs/Ge multi-junction space solar cells. In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 22–26 October 2001; ETA: Florence, Italy; WIP: Munich, Germany, 2001. [Google Scholar]
- Riccobono, J.R.; Ludman, J.E. Solar holography. In Holography for the New Millennium; Ludman, J., Caulfield, H.J., Riccobono, J., Eds.; Springer: New York, NY, USA, 2002; pp. 157–178. [Google Scholar] [CrossRef]
- Palacios, P.B.; Álvarez-Álvarez, S.; Marín-Sáez, J.; Collados, M.V.; Chemisana, D.; Atencia, J. Broadband behavior of transmission volume holographic optical elements for solar concentration. Opt. Express 2015, 23, A671–A681. [Google Scholar] [CrossRef]
- Renk, K.; Jacques, Y.; Felts, C.; Chovit, A. Holographic Solar Energy Concentrators for Solar Thermal Rocket Engines; No. NTS-6006; NTS Engineering: Long Beach, CA, USA, 1988. [Google Scholar]
- Loicq, J.; Venancio, L.M.; Stockman, Y.; Georges, M.P. Performances of volume phase holographic grating for space applications: Study of the radiation effect. Appl. Opt. 2013, 52, 8338–8346. [Google Scholar] [CrossRef]
- Bianco, G.; Ferrara, M.A.; Borbone, F.; Roviello, A.; Pagliarulo, V.; Grilli, S.; Ferraro, P.; Striano, V.; Coppola, G. Multiplexed holographic lenses: Realization and optical characterization. In Proceedings of the 17th Italian Conference on Photonics Technologies, Fotonica AEIT 2015, Turin, Italy, 6–8 May 2015; IET: Stevenage, UK, 2015; Volume 2015. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled-wave theory of thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Martin, S.; Akbari, H.; Keshri, S.; Bade, D.; Naydenova, I.; Murphy, K.; Toal, V. Holographically Recorded Low Spatial Frequency Volume Bragg Gratings and Holographic Optical Elements. In Holographic Materials and Optical Systems; Naydenova, I., Ed.; InTechOpen: London, UK, 2017; Chapter 4; pp. 73–98. ISBN 978-953-51-3038-3. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; ISBN 978-0974707723. [Google Scholar]
- Close, D.H. Holographic Optical Elements. Opt. Eng. 1975, 14, 408–419. [Google Scholar] [CrossRef]
- Barden, S.C.; Arns, J.A.; Colburn, W.S. Volume-phase holographic gratings and their potential for astronomical applications. Proc. SPIE 1998, 3355, 866. [Google Scholar] [CrossRef]
- Kress, B.C.; Meyureis, P. Applied Digital Optics: From Micro-Optics to Nanophotonics; John Wiley & Sons: Chippenham, UK, 2009; 638p, ISBN 978-0-470-02263-4. [Google Scholar]
- Moharam, M.G.; Young, L. Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 1978, 17, 1757–1759. [Google Scholar] [CrossRef] [PubMed]
- Leutz, R.; Suzuki, A. Solar concentration in space. In Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators; Springer: Heidelberg, Germany, 2001; pp. 246–256. ISBN 978-3-540-45290-4. [Google Scholar]
- Vadivelan, V. Recording of holographic solar concentrator in ultra-fine grain visible wavelength sensitive silver halide emulsion. Am. J. Electron. Commun. 2015, 2, 15–17. [Google Scholar] [CrossRef]
- Hull, J.; Lauer, J.; Broadbent, D. Holographic solar concentrators. Energy 1987, 12, 209–215. [Google Scholar] [CrossRef]
- Quintana, J.A.; Boj, P.G.; Crespo, J.; Pardo, M.; Satorre, M.A. Line-focusing holographic mirrors for solar ultraviolet energy concentration. Appl. Opt. 1997, 36, 3689–3693. [Google Scholar] [CrossRef]
- Ranjan, R.; Khan, A.; Chakraborty, N.R.; Yadav, H.L. Use of holographic lenses recorded in dichromated gelatin film for PV concentrator applications to minimize solar tracking. In Energy Problems and Environmental Engineering; Perlovsky, L., Dionysiou, D.D., Zadeh, L.A., Kostic, M.M., Gonzalez-Concepcion, C., Jaberg, H., Sopian, K., Eds.; WSEAS Press: Athens, Greece, 2009; pp. 49–52. ISBN 978-960-474-093-2. [Google Scholar]
- Chang, B.J. Dichromated Gelatin Holograms and Their Applications. Opt. Eng. 1980, 19, 195642. [Google Scholar] [CrossRef]
- Bruder, F.K.; Fäcke, T.; Grote, F.; Hagen, R.; Hönel, D.; Koch, E.; Rewitz, C.; Walze, G.; Wewer, B. Mass Production of Volume Holographic Optical Elements (vHOEs) Using Bayfol® HX Photopolymer Film in a Roll-to-Roll Copy Process. In Practical Holography XXXI: Materials and Applications, Proceedings of the SPIE, San Francisco, CA, USA, 6 April 2017; SPIE: Washington, DC, USA, 2017; Volume 10127, pp. 101270A-1–101270A-20. [Google Scholar] [CrossRef]
- Vather, D.; Naydenova, I.; Cody, D.; Zawadzka, M.; Martin, S.; Mihaylova, E.; Curran, S.; Duffy, P.; Portillo, J.; Connell, D.; et al. Serialized holography for brand protection and authentication. Appl. Opt. 2018, 57, E131–E137. [Google Scholar] [CrossRef]
- Zhao, G.; Mouroulis, P. Diffusion model of hologram formation in dry photopolymer materials. J. Mod. Opt. 1994, 41, 1929–1939. [Google Scholar] [CrossRef]
- Mackey, D.; O’Reilly, P.; Naydenova, I. Theoretical modelling of the effect of polymer chain immobilization rates on holographic recording in photopolymers. JOSA A 2016, 33, 920–929. [Google Scholar] [CrossRef]
- Gleeson, M.R.; Sheridan, J.T.; Bruder, F.K.; Rölle, T.; Berneth, H.; Weiser, M.S.; Fäcke, T. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model. Opt. Express 2011, 19, 26325–26342. [Google Scholar] [CrossRef] [PubMed]
- Jurbergs, D.; Bruder, F.K.; Deuber, F.; Fäcke, T.; Hagen, R.; Hönel, D.; Rölle, T.; Weiser, M.S.; Volkov, A. New recording materials for the holographic industry. Proc. SPIE 2001, 7233, 72330K-1–72330K-10. [Google Scholar] [CrossRef]
- Stevenson, S.H. DuPont multicolor holographic recording films. Proc. SPIE 1997, 3011, 231–241. [Google Scholar] [CrossRef]
- Akbari, H.; Naydenova, I.; Martin, S. Using Acrylamide Based Photopolymers for Fabrication of Holographic Optical Elements in Solar Energy Applications. Appl. Opt. 2014, 53, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C.; Kurtz, S.R. Durability of Fresnel lenses: A review specific to the concentrating photovoltaic application. Sol. Energy Mater. Sol. Cells 2011, 95, 2037–2068. [Google Scholar] [CrossRef]
- Schissel, P.; Jorgensen, G.; Kennedy, C.; Goggin, R. Silvered-PMMA reflectors. Sol. Energy Mater. Sol. Cells 1994, 33, 183–197. [Google Scholar] [CrossRef]
- Dever, J.A.; Banks, B.A.; Yan, L. Effects of vacuum ultraviolet radiation on DC93-500 silicone. J. Spacecr. Rocket. 2006, 43, 386–392. [Google Scholar] [CrossRef]
- Vaia, R.A.; Dennis, C.L.; Natarajan, L.V.; Tondiglia, V.P.; Tomlin, D.W.; Bunning, T.J. Onestep, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique. Adv. Mater. 2001, 13, 1570. [Google Scholar] [CrossRef]
- Lei, Z.; Jun-He, H.; Ruo-Ping, L.; Long-Ge, W.; Ming-Ju, H. Resisting shrinkage properties of volume holograms recorded in TiO2 nanoparticle-dispersed acrylamide-based photopolymer. Chin. Phys. B 2013, 22, 124207. [Google Scholar] [CrossRef]
- Suzuki, N.; Tomita, Y.; Ohmori, K.; Hidaka, M.; Chikama, K. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Opt. Express 2006, 14, 12712–12719. [Google Scholar] [CrossRef] [PubMed]
- Moothanchery, M.; Naydenova, I.; Mintova, S.; Toal, V. Nanozeolites doped photopolymer layers with reduced shrinkage. Opt. Express 2011, 19, 25786. [Google Scholar] [CrossRef] [Green Version]
- Cheben, P.; del Monte, F.; Levy, D.; Belenguer, T.; Nuñez, A. Holographic diffraction gratings recording in organically modified silica gels. Opt. Lett. 1996, 21, 1857. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Ferrara, M.A.; Borbone, F.; Roviello, A.; Pagliarulo, V.; Grilli, S.; Ferraro, P.; Striano, V.; Coppola, G. Volume Holographic Gratings: Fabrication and Characterization. Proc. SPIE 2015, 9508, 950807. [Google Scholar] [CrossRef]
- Bianco, G.; Ferrara, M.A.; Borbone, F.; Roviello, A.; Striano, V.; Coppola, G. Photopolymer-based volume holographic optical elements: Design and possible applications. J. Eur. Opt. Soc. 2015, 10, 15057. [Google Scholar] [CrossRef]
- Ludman, J. Holographic solar concentrator. Appl. Opt. 1982, 21, 3057–3058. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, K.; Wagemann, U.; Schulat, J.; Schutte, H.; Stojanoff, C.G. Fabrication and test of a holographic concentrator for two color PV-operation. Proc. SPIE 1994, 2255, 812–821. [Google Scholar] [CrossRef]
- Ludman, J.E.; Riccobono, J.; Semenova, I.V.; Reinhand, N.O.; Tai, W.; Li, X.; Syphers, G.; Rallis, E.; Sliker, G.; Martín, J. The optimization of a holographic system for solar power generation. Sol. Energy 1997, 60, 1–9. [Google Scholar] [CrossRef]
- Okorogu, A.O.; Marvin, D.C.; Liu, S.H.; Prater, A. Holographic Solar Concentrator. U.S. Patent 2010/0186818A1, 29 July 2010. [Google Scholar]
- Hung, J.; Chan, P.S.; Sun, C.; Ho, C.W.; Tam, W.Y. Doubly slanted layer structures in holographic gelatin emulsions: Solar concentrators. J. Opt. 2010, 12, 045104. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, H.-Y.; Piao, M.-L.; Kim, N. Holographic Solar Energy Concentrator Using Angular Multiplexed and Iterative Recording Method. IEEE Photonics J. 2016, 8, 8400511. [Google Scholar] [CrossRef]
- Naydenova, I.; Akbari, H.; Dalton, C.; Yahya, M.; Pang Tee Wei, C.; Toal, V.; Martin, S. Photopolymer Holographic Optical Elements for Application in Solar Energy Concentrators. In Holography—Basic Principles and Contemporary Applications; Mihaylova, E., Ed.; InTechOpen: London, UK, 2013; pp. 129–145. ISBN 978-953-51-1117-7. [Google Scholar] [CrossRef]
- James, P.A.B.; Bahaj, A.S. Holographic optical elements: Various principles for solar control of conservatories and sunrooms. Sol. Energy 2005, 78, 441–454. [Google Scholar] [CrossRef]
- Hsieh, M.; Lin, S.; Hsu, K.Y.; Burr, J.; Lin, S. An efficient solar concentrator using volume hologram. In CLEO:2011–Laser Applications to Photonic Applications, OSA Technical Digest; Optical Society of America: Baltimore, MD, USA, 2011; p. PDPB8. [Google Scholar] [CrossRef]
- Marin-Saez, J.; Atencia, J.; Chemisana, D.; Collados, M.V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration. Opt. Express 2018, 26, A398–A412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- aSolarus. Bifacial Solar PV. Available online: http://www.asolarus.com/product-distribution/bifacial-solar-pv/#prettyPhoto (accessed on 1 December 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.A.; Striano, V.; Coppola, G. Volume Holographic Optical Elements as Solar Concentrators: An Overview. Appl. Sci. 2019, 9, 193. https://doi.org/10.3390/app9010193
Ferrara MA, Striano V, Coppola G. Volume Holographic Optical Elements as Solar Concentrators: An Overview. Applied Sciences. 2019; 9(1):193. https://doi.org/10.3390/app9010193
Chicago/Turabian StyleFerrara, Maria Antonietta, Valerio Striano, and Giuseppe Coppola. 2019. "Volume Holographic Optical Elements as Solar Concentrators: An Overview" Applied Sciences 9, no. 1: 193. https://doi.org/10.3390/app9010193