Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies
Abstract
:1. Introduction
2. Solar Collector Systems Employed for Wastewater Treatment
2.1. Concentrating Systems
2.1.1. Parabolic Trough Collectors (PTC)
2.1.2. Compound Parabolic Collectors (CPC)
2.1.3. Parabolic Dish Concentrators (PDC)
2.1.4. Fresnel Solar Concentrators
2.1.5. Optical Fiber Photoreactors
2.2. Non-Concentrating Systems (NCC)
2.2.1. Inclined Plate Collectors (IPC)
2.2.2. Water-Bell Photoreactor
3. Advanced Oxidation Processes and Photocatalysis
3.1. Principles of Solar Photocatalysis
3.1.1. Heterogeneous Photocatalysis
3.1.2. Homogeneous Photocatalysis
3.2. Homogeneous Versus Heterogeneous Photocatalysis
4. Wastewaters
4.1. Model Pollutants
4.2. Real Pollutants
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chueca, J.; Polo-López, M.I.; Mosteo, R.; Ormad, M.P.; Fernández-Ibáñez, P. Disinfection of real and simulated urban wastewater effluents using a mild solar photo-Fenton. Appl. Catal. B Environ. 2014, 150–151, 619–629. [Google Scholar] [CrossRef]
- Barwal, A.; Chaudhary, R. Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process. J. Environ. Manag. 2016, 177, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Ruppert, G.; Bauer, R.; Heisler, G. The photo-Fenton reaction—An effective photochemical wastewater treatment process. J. Photochem. Photobiol. A Chem. 1993, 73, 75–78. [Google Scholar] [CrossRef]
- Kiwi, J.; Pulgarin, C.; Peringer, P. Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl. Catal. B Environ. 1994, 3, 335–350. [Google Scholar] [CrossRef]
- Robert, D.; Malato, S. Solar photocatalysis: A clean process for water detoxification. Sci. Total. Environ. 2002, 291, 85–97. [Google Scholar] [CrossRef]
- Schiavello, M. Heterogeneous Photocatalysis; Wiley Series in Photoscience & Photoengineering; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-3-662-48717-4. [Google Scholar]
- EPA. Design Manual: Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment; EPA: Washington, DC, USA, 1998.
- Rabl, A. A Solar Collectors and Their Applications; Oxford University Press: Oxford, UK, 1985; ISBN 978-0-195-0354-69. [Google Scholar]
- Calkins, J.; Buckles, J.D.; Moeller, J.R. the Role of Solar Ultraviolet Radiation in ‘Natural’ Water Purification. Photochem. Photobiol. 1976, 24, 49–57. [Google Scholar] [CrossRef]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 170–171, 90–123. [Google Scholar] [CrossRef]
- Gutiérrez-Alfaro, S.; Rueda-Márquez, J.J.; Perales, J.A.; Manzano, M.A. Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration. Sci. Total. Environ. 2018, 619–620, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Sukkasi, S.; Terdthaichairat, W. Improving the efficacy of solar water disinfection by incremental design innovation. Clean Technol. Environ. Policy 2015, 17, 2013–2027. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Tarpani, R.R.Z.; Miralles-Cuevas, S.; Cabrera-Reina, A.; Malato, S.; Azapagic, A. Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci. Total. Environ. 2018. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Ali, W.; Haydar, S.; Tesfamariam, S.; Sadiq, R. Modeling exposure period for solar disinfection (SODIS) under varying turbidity and cloud cover conditions. Clean Technol. Environ. Policy 2014, 16, 861–874. [Google Scholar] [CrossRef]
- Yahya, N.; Aziz, F.; Jamaludin, N.A.; Mutalib, M.A.; Ismail, A.F.; Salleh, W.N.; Jaafar, J.; Yusof, N.; Ludin, N.A. A review of integrated photocatalyst adsorbents for wastewater treatment. J. Environ. Chem. Eng. 2018, 6, 7411–7425. [Google Scholar] [CrossRef]
- Rodríguez, S.M.; Gálvez, J.B.; Rubio, M.I.M.; Ibáñez, P.F.; Padilla, D.A.; Pereira, M.C.; Mendes, J.F.; De Oliveira, J.C. Engineering of solar photocatalytic collectors. Sol. Energy 2004, 77, 513–524. [Google Scholar] [CrossRef]
- Baharoon, D.A.; Rahman, H.A.; Omar, W.Z.W.; Fadhl, S.O. Historical development of concentrating solar power technologies to generate clean electricity efficiently—A review. Renew. Sustain. Energy Rev. 2015, 41, 996–1027. [Google Scholar] [CrossRef]
- Pichat, P. Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Wiley Series in New Materials for Sustainable Energy and Development; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-352-733-1871. [Google Scholar]
- Tsao, Y.-C.; Søndergaard, T.; Skovsen, E.; Gurevich, L.; Pedersen, K.; Pedersen, T.G. Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Opt. Express 2013, 21, A84. [Google Scholar] [CrossRef]
- Jorgensen, G.J.; Govindarajan, R. Ultraviolet Reflector Materials for Solar Detoxification of Hazardous Waste. Proc. SPIE 1991, 1536, 194–205. [Google Scholar] [CrossRef]
- Wendelin, T. Outdoor Testing of Advanced Optical Materials for Solar Thermal Electric Applications; National Renewable Energy Laboratory: Golden, CO, USA, 1992.
- Kutscher, C.; Davenport, R.; Farrington, R.; Jorgensen, G.; Lewandowski, A.; Vineyard, C. Low-Cost Collectors. System Development Progress Report; Solar Energy Research Institute: Golden, CO, USA, 1984.
- Alanod Aluminium-Veredlung GmbH & Co. Available online: https://www.alanod.com/ (accessed on 15 March 2018).
- Tanveer, M.; Tezcanli Guyer, G. Solar assisted photo degradation of wastewater by compound parabolic collectors: Review of design and operational parameters. Renew. Sustain. Energy Rev. 2013, 24, 534–543. [Google Scholar] [CrossRef]
- Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew. Sustain. Energy Rev. 2010, 14, 2772–2783. [Google Scholar] [CrossRef]
- Anderson, J.V.; Link, H.; Bohn, M.; Gupta, B. Development of solar detoxification technology in the USA—An introduction. Sol. Energy Mater. 1991, 24, 538–549. [Google Scholar] [CrossRef]
- Ortega-Gómez, E.; Martín, M.M.B.; García, B.E.; Pérez, J.A.S.; Ibáñez, P.F. Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity. Appl. Catal. B Environ. 2016, 181, 1–6. [Google Scholar] [CrossRef]
- Sichel, C.; Tello, J.; de Cara, M.; Fernández-Ibáñez, P. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 2007, 129, 152–160. [Google Scholar] [CrossRef]
- Ndounla, J.; Kenfack, S.; Wéthé, J.; Pulgarin, C. Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. Appl. Catal. B Environ. 2014, 148–149, 144–153. [Google Scholar] [CrossRef]
- Braham, R.J.; Harris, A.T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res. 2009, 48, 8890–8905. [Google Scholar] [CrossRef]
- Waghmare, S.A.; Gulhane, N.P. Optical evaluation of compound parabolic collector with low acceptance angle. Opt. Int. J. Light Electron Opt. 2017, 149, 359–371. [Google Scholar] [CrossRef]
- Fernández-García, A.; Rojas, E.; Pérez, M.; Silva, R.; Hernández-Escobedo, Q.; Manzano-Agugliaro, F. A parabolic-trough collector for cleaner industrial process heat. J. Clean. Prod. 2015, 89, 272–285. [Google Scholar] [CrossRef]
- Desai, N.B.; Bandyopadhyay, S. Optimization of concentrating solar thermal power plant based on parabolic trough collector. J. Clean. Prod. 2015, 89, 262–271. [Google Scholar] [CrossRef]
- Montes, M.J.; Rovira, A.; Muñoz, M.; Martínez-Val, J.M. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors. Appl. Energy 2011, 88, 3228–3238. [Google Scholar] [CrossRef]
- Al-Soud, M.S.; Hrayshat, E.S. A 50 MW concentrating solar power plant for Jordan. J. Clean. Prod. 2009, 17, 625–635. [Google Scholar] [CrossRef]
- Valan Arasu, A.; Sornakumar, T. Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Sol. Energy 2007, 81, 1273–1279. [Google Scholar] [CrossRef]
- Kalogirou, S. Use of parabolic trough solar energy collectors for sea-water desalination. Appl. Energy 1998, 60, 65–88. [Google Scholar] [CrossRef]
- Jafari Mosleh, H.; Mamouri, S.J.; Shafii, M.B.; Hakim Sima, A. A new desalination system using a combination of heat pipe, evacuated tube and parabolic through collector. Energy Convers. Manag. 2015, 99, 141–150. [Google Scholar] [CrossRef]
- Bigoni, R.; Kötzsch, S.; Sorlini, S.; Egli, T. Solar water disinfection by a Parabolic Trough Concentrator (PTC): Flow-cytometric analysis of bacterial inactivation. J. Clean. Prod. 2014, 67, 62–71. [Google Scholar] [CrossRef]
- Chafie, M.; Ben Aissa, M.F.; Guizani, A. Energetic end exergetic performance of a parabolic trough collector receiver: An experimental study. J. Clean. Prod. 2018, 171, 285–296. [Google Scholar] [CrossRef]
- Alpert, D.J.; Sprung, J.L.; Pacheco, J.E.; Prairie, M.R.; Reilly, H.E.; Milne, T.A.; Nimlos, M.R. Sandia National Laboratories’ work in solar detoxification of hazardous wastes. Sol. Energy Mater. 1991, 24, 594–607. [Google Scholar] [CrossRef]
- Fernández, P.; Blanco, J.; Sichel, C.; Malato, S. Water disinfection by solar photocatalysis using compound parabolic collectors. Catal. Today 2005, 101, 345–352. [Google Scholar] [CrossRef]
- AOSOL Paineis Solares. Available online: http://www.aosol.pt/ (accessed on 18 March 2018).
- CADOX Project Website. Available online: https://www.psa.es/en/projects/cadox/ (accessed on 18 March 2018).
- Sacco, O.; Vaiano, V.; Rizzo, L.; Sannino, D. Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J. Clean. Prod. 2018, 175, 38–49. [Google Scholar] [CrossRef]
- Coventry, J.; Andraka, C. Dish systems for CSP. Sol. Energy 2017, 152, 140–170. [Google Scholar] [CrossRef]
- Hijazi, H.; Mokhiamar, O.; Elsamni, O. Mechanical design of a low cost parabolic solar dish concentrator. Alex. Eng. J. 2016, 55, 1–11. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Azapagic, A. Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage sludge. J. Clean. Prod. 2018, 204, 832–847. [Google Scholar] [CrossRef]
- Bettonte, M.; Miotello, A.; Brusa, R.S. Solar Concentrator, Method and Equipement for Its Achievement. 2007. Available online: http://www.sumobrain.com/patents/wipo/%20Solar-concentrator-method-equip ment-its/WO2008074485A1.pdf (accessed on 10 March 2018).
- Eccher, M.; Turrini, S.; Salemi, A.; Bettonte, M.; Miotello, A.; Brusa, R.S. Construction method and optical characterization of parabolic solar modules for concentration systems. Sol. Energy 2013, 94, 19–27. [Google Scholar] [CrossRef]
- Orlandi, M.; Filosa, N.; Bettonte, M.; Fendrich, M.; Girardini, M.; Battistini, T.; Miotello, A. Treatment of surfactant-rich industrial wastewaters with concentrated sunlight: Toward solar wastewater remediation. Int. J. Environ. Sci. Technol. 2018, 1–6. [Google Scholar] [CrossRef]
- Pauletta, S. A Solar Fresnel Collector Based on an Evacuated Flat Receiver. Energy Procedia 2016, 101, 480–487. [Google Scholar] [CrossRef]
- Montes, M.J.; Rubbia, C.; Abbas, R.; Martínez-Val, J.M. A comparative analysis of configurations of linear fresnel collectors for concentrating solar power. Energy 2014, 73, 192–203. [Google Scholar] [CrossRef]
- Boito, P.; Grena, R. Optimization of the geometry of Fresnel linear collectors. Sol. Energy 2016, 135, 479–486. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A. Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution. Chemosphere 2006, 65, 1242–1248. [Google Scholar] [CrossRef]
- Durán, A.; Monteagudo, J.M. Solar photocatalytic degradation of reactive blue 4 using a Fresnel lens. Water Res. 2007, 41, 690–698. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A.; Guerra, J.; García-Peña, F.; Coca, P. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens. Chemosphere 2008, 71, 161–167. [Google Scholar] [CrossRef]
- Ray, A.K. A new photocatalytic reactor for destruction of toxic water pollutants by advanced oxidation process. Catal. Today 1998, 44, 357–368. [Google Scholar] [CrossRef]
- Sun, R.D.; Nakajima, A.; Watanabe, I.; Watanabe, T.; Hashimoto, K. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. J. Photochem. Photobiol. A Chem. 2000, 136, 111–116. [Google Scholar] [CrossRef]
- Danion, A.; Disdier, J.; Guillard, C.; Jaffrezic-Renault, N. Malic acid photocatalytic degradation using a TiO2-coated optical fiber reactor. J. Photochem. Photobiol. A Chem. 2007, 190, 135–140. [Google Scholar] [CrossRef]
- Peill, N.J.; Hoffmann, M. Solar Powered photocatalytic Fiber-Optic Cable Reactor for Waste Stream Remediation. J. Sol. Energy Eng. 1997, 119, 229–236. [Google Scholar] [CrossRef]
- Dillert, R.; Cassano, A.E.; Goslich, R.; Bahnemann, D. Large scale studies in solar catalytic wastewater treatment. Catal. Today 1999, 54, 267–282. [Google Scholar] [CrossRef]
- Tian, Z.; Perers, B.; Furbo, S.; Fan, J. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series. Appl. Energy 2017, 205, 417–427. [Google Scholar] [CrossRef]
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of solar energy in water treatment processes: A review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef]
- Sutisna; Rokhmat, M.; Wibowo, E.; Khairurrijal; Abdullah, M. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination. Sustain. Environ. Res. 2017, 27, 172–180. [Google Scholar] [CrossRef]
- Alfano, O.M.; Bahnemann, D.; Cassano, A.E.; Dillert, R.; Goslich, R. Photocatalysis in water environments using artificial and solar light. Catal. Today 2000, 58, 199–230. [Google Scholar] [CrossRef]
- Minero, C.; Pelizzetti, E.; Malato, S.; Blanco, J. Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere 1993, 26, 2103–2119. [Google Scholar] [CrossRef]
- Li Puma, G. Dimensionless analysis of photocatalytic reactors using suspended solid photocatalysts. Chem. Eng. Res. Des. 2005, 83, 820–826. [Google Scholar] [CrossRef]
- Abdel-Maksoud, Y.K.; Imam, E.; Ramadan, A.R. TiO2 water-bell photoreactor for wastewater treatment. Sol. Energy 2018, 170, 323–335. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Misra, N.N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci. Technol. 2015, 45, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Brillas, E.; Mur, E.; Sauleda, R.; Sànchez, L.; Peral, J.; Domènech, X.; Casado, J. Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B Environ. 1998, 16, 31–42. [Google Scholar] [CrossRef]
- Park, K.; Ali, I.; Kim, J.O. Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase. J. Environ. Manag. 2018, 218, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Mehos, M.; Turchi, C.; Boegel, A.J.; Merrill, T.; Stanley, R. Pilot-Scale Study of the Solar Detoxification of VOC-Contaminated Groundwater; National Renewable Energy Laborary: Golden, CO, USA, 1992.
- Moraes, J.E.F.; Quina, F.H.; Nascimento, C.A.O.; Silva, D.N.; Chiavone-Filho, O. Treatment of Saline Wastewater Contaminated with Hydrocarbons by the Photo-Fenton Process. Environ. Sci. Technol. 2004, 38, 1183–1187. [Google Scholar] [CrossRef]
- Negishi, N.; Miyazaki, Y.; Kato, S.; Yang, Y. Effect of HCO3− concentration in groundwater on TiO2 photocatalytic water purification. Appl. Catal. B Environ. 2019, 242, 449–459. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Z.; An, H.; Zhai, J.; Li, Q.; Cui, H. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light. Appl. Surf. Sci. 2015, 324, 817–824. [Google Scholar] [CrossRef]
- Negishi, N.; Sugasawa, M.; Miyazaki, Y.; Hirami, Y.; Koura, S. Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst. Water Res. 2019, 150, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, F.E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.L.; Yates, J.T. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes. Chem. Rev. 2006, 106, 4428–4453. [Google Scholar] [CrossRef] [PubMed]
- Edla, R.; Patel, N.; Orlandi, M.; Bazzanella, N.; Bello, V.; Maurizio, C.; Mattei, G.; Mazzoldi, P.; Miotello, A. Highly photo-catalytically active hierarchical 3D porous/urchin nanostructured Co3O4 coating synthesized by Pulsed Laser Deposition. Appl. Catal. B Environ. 2015, 166–167, 475–484. [Google Scholar] [CrossRef]
- Zimbone, M.; Buccheri, M.A.; Cacciato, G.; Sanz Gonzàlez, R.; Rappazzo, G.; Boninelli, S.; Reitano, R.; Romano, L.; Privitera, V.; Grimaldi, M.G. {P}hotocatalytical and antibacterial activity of {T}i{O}2 nanoparticles obtained by laser ablation in water. Appl. Catal. B Environ. 2015, 165, 487–494. [Google Scholar] [CrossRef]
- Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Momba, M.N.B. UV and solar photocatalytic disinfection of municipal wastewater: Inactivation, reactivation and regrowth of bacterial pathogens. Int. J. Environ. Sci. Technol. 2018, 1–10. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Miranda-García, N.; Maldonado, M.I.; Coronado, J.M.; Malato, S. Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant. Catal. Today 2010, 151, 107–113. [Google Scholar] [CrossRef]
- Youn-Chul, O. Photocatalytic Degradation of Organic Contaminants in Water; Iowa University: Iowa City, IA, USA, 2004. [Google Scholar]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.; Jaiswal, R.; Warang, T.; Scarduelli, G.; Dashora, A.; Ahuja, B.L.; Kothari, D.C.; Miotello, A. Efficient photocatalytic degradation of organic water pollutants using V-N-codoped TiO2 thin films. Appl. Catal. B Environ. 2014, 150–151, 74–81. [Google Scholar] [CrossRef]
- Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B Environ. 2015, 168–169, 333–341. [Google Scholar] [CrossRef]
- Jaiswal, R.; Patel, N.; Dashora, A.; Fernandes, R.; Yadav, M.; Edla, R.; Varma, R.S.; Kothari, D.C.; Ahuja, B.L.; Miotello, A. Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl. Catal. B Environ. 2016, 183, 242–253. [Google Scholar] [CrossRef]
- Varma, R.S.; Thorat, N.; Fernandes, R.; Kothari, D.C.; Patel, N.; Miotello, A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2nanocomposites. Catal. Sci. Technol. 2016, 6, 8428–8440. [Google Scholar] [CrossRef]
- Jing, H.Y.; Wen, T.; Fan, C.M.; Gao, G.Q.; Zhong, S.L.; Xu, A.W. Efficient adsorption/photodegradation of organic pollutants from aqueous systems using Cu2O nanocrystals as a novel integrated photocatalytic adsorbent. J. Mater. Chem. A 2014, 2, 14563–14570. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Memb. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Malato, S.; Maldonado, M.I.; Fernández-Ibáñez, P.; Oller, I.; Polo, I.; Sánchez-Moreno, R. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. [Google Scholar] [CrossRef]
- Niu, J.; Yin, L.; Dai, Y.; Bao, Y.; Crittenden, J.C. Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water. Appl. Catal. A Gen. 2016, 521, 90–95. [Google Scholar] [CrossRef]
- Edla, R.; Tonezzer, A.; Orlandi, M.; Patel, N.; Fernandes, R.; Bazzanella, N.; Date, K.; Kothari, D.C.; Miotello, A. 3D hierarchical nanostructures of iron oxides coatings prepared by pulsed laser deposition for photocatalytic water purification. Appl. Catal. B Environ. 2017, 219, 401–411. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellín, P.; Martínez, C.M.; Flores, P.; Navarro, S. Semiconductor oxides-sensitized photodegradation of fenamiphos in leaching water under natural sunlight. Appl. Catal. B Environ. 2012, 115–116, 31–37. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nabi, G.; Rafique, M.; Khalid, N.R. Nanostructured-based WO3 photocatalysts: Recent development, activity enhancement, perspectives and applications for wastewater treatment. Int. J. Environ. Sci. Technol. 2017, 14, 2519–2542. [Google Scholar] [CrossRef]
- Borges, M.E.; Sierra, M.; Esparza, P. Solar photocatalysis at semi-pilot scale: Wastewater decontamination in a packed-bed photocatalytic reactor system with a visible-solar-light-driven photocatalyst. Clean Technol. Environ. Policy 2017, 19, 1239–1245. [Google Scholar] [CrossRef]
- Sano, T.; Negishi, N.; Takeuchi, K.; Matsuzawa, S. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Sol. Energy 2004, 77, 543–552. [Google Scholar] [CrossRef]
- Vela, N.; Calín, M.; Yáñez-Gascón, M.J.; Garrido, I.; Pérez-Lucas, G.; Fenoll, J.; Navarro, S. Solar reclamation of wastewater effluent polluted with bisphenols, phthalates and parabens by photocatalytic treatment with TiO2/Na2S2O8 at pilot plant scale. Chemosphere 2018, 212, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.M.; Fernández, G.; Klamerth, N.; Maldonado, M.I.; Álvarez, P.M.; Malato, S. Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl. Catal. B Environ. 2010, 95, 228–237. [Google Scholar] [CrossRef]
- Muradov, N.Z. Solar detoxification of nitroglycerine-contaminated water using immobilized titania. Sol. Energy 1994, 52, 283–288. [Google Scholar] [CrossRef]
- Villén, L.; Manjón, F.; García-Fresnadillo, D.; Orellana, G. Solar water disinfection by photocatalytic singlet oxygen production in heterogeneous medium. Appl. Catal. B Environ. 2006, 69, 1–9. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A.; Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 2018, 349, 838–848. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; Mackay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Kim, S.M.; Vogelpohl, A. Degradation of Organic Pollutants by the Photo-Fenton-Process. Chem. Eng. Technol. 1998, 21, 187–191. [Google Scholar] [CrossRef]
- Ruales-Lonfat, C.; Barona, J.F.; Sienkiewicz, A.; Bensimon, M.; Vélez-Colmenares, J.; Benítez, N.; Pulgarín, C. Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Appl. Catal. B Environ. 2015, 166–167, 497–508. [Google Scholar] [CrossRef]
- García-Fernández, I.; Miralles-Cuevas, S.; Oller, I.; Malato, S.; Fernández-Ibáñez, P.; Polo-López, M.I. Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. J. Hazard. Mater. 2018. [Google Scholar] [CrossRef]
- Edla, R.; Gupta, S.; Patel, N.; Bazzanella, N.; Fernandes, R.; Kothari, D.C.; Miotello, A. Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition. Appl. Catal. A Gen. 2016, 515, 1–9. [Google Scholar] [CrossRef]
- Orlandi, M.; Dalle Carbonare, N.; Caramori, S.; Bignozzi, C.A.; Berardi, S.; Mazzi, A.; El Koura, Z.; Bazzanella, N.; Patel, N.; Miotello, A. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Appl. Mater. Interfaces 2016, 8, 20003–20011. [Google Scholar] [CrossRef] [PubMed]
- Schenato, M.; Ricardo, C.L.A.; Scardi, P.; Edla, R.; Miotello, A.; Orlandi, M.; Morrish, R. Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis. Appl. Catal. A Gen. 2016, 510, 156–160. [Google Scholar] [CrossRef]
- Mazzi, A.; Miotello, A. Simulation of phase explosion in the nanosecond laser ablation of aluminum. J. Colloid Interface Sci. 2017, 489, 126–130. [Google Scholar] [CrossRef]
- Maurizio, C.; Edla, R.; Michieli, N.; Orlandi, M.; Trapananti, A.; Mattei, G.; Miotello, A. Two-step growth mechanism of supported Co3O4-based sea-urchin like hierarchical nanostructures. Appl. Surf. Sci. 2018, 439, 876–882. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Alarcón, D.C.; Maldonado, M.I.; Fernández-Ibáñez, P.; Gernjak, W. Photocatalytic decontamination and disinfection of water with solar collectors. Catal. Today 2007, 122, 137–149. [Google Scholar] [CrossRef]
- Fernandez-Ibañez, P.; Malato, S.; Enea, O. Photoelectrochemical reactors for the solar decontamination of water. Catal. Today 1999, 54, 329–339. [Google Scholar] [CrossRef]
- Klare, M.; Scheen, J.; Vogelsang, K.; Jacobs, H.; Broekaert, J.A.C. Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis. Chemosphere 2000, 41, 353–362. [Google Scholar] [CrossRef]
- Oyama, T.; Aoshima, A.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N. Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation. Sol. Energy 2004, 77, 525–532. [Google Scholar] [CrossRef]
- Minero, C.; Pelizzetti, E.; Malato, S.; Blanco, J. Large solar plant photocatalytic water decontamination: Effect of operational parameters. Sol. Energy 1996, 56, 421–428. [Google Scholar] [CrossRef]
- Bandala, E.R.; Arancibia-Bulnes, C.A.; Orozco, S.L.; Estrada, C.A. Solar photoreactors comparison based on oxalic acid photocatalytic degradation. Sol. Energy 2004, 77, 503–512. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Richter, C.; Curcó, D.; Giménez, J. Low-concentration CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector. Water Sci. Technol. 1997, 35, 157–164. [Google Scholar] [CrossRef]
- Noorjahan, M.; Reddy, M.P.; Kumari, V.D.; Lavédrine, B.; Boule, P.; Subrahmanyam, M. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. J. Photochem. Photobiol. A Chem. 2003, 156, 179–187. [Google Scholar] [CrossRef]
- Feitz, A.J.; Boyden, B.H.; Waite, T.D. Evaluation of two solar pilot scale fixed-bed photocatalytic reactors. Water Res. 2000, 34, 3927–3932. [Google Scholar] [CrossRef]
- Chan, A.H.C.; Chan, C.K.; Barford, J.P.; Porter, J.F. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res. 2003, 37, 1125–1135. [Google Scholar] [CrossRef]
- Van Well, M.; Dillert, R.H.G.; Bahnemann, D.W.; Benz, V.W.; Mueller, M.A. A Novel Nonconcentrating Reactor for Solar Water Detoxification. J. Sol. Energy Eng. 1997, 119, 114–119. [Google Scholar] [CrossRef]
- Xu, J.; Ao, Y.; Fu, D.; Lin, J.; Lin, Y.; Shen, X.; Yuan, C.; Yin, Z. Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light. J. Photochem. Photobiol. A Chem. 2008, 199, 165–169. [Google Scholar] [CrossRef]
- Kositzi, M.; Poulios, I.; Malato, S.; Caceres, J.; Campos, A. Solar photocatalytic treatment of synthetic municipal wastewater. Water Res. 2004, 38, 1147–1154. [Google Scholar] [CrossRef]
- Augugliaro, V.; Baiocchi, C.; Bianco Prevot, A.; García-López, E.; Loddo, V.; Malato, S.; Marcí, G.; Palmisano, L.; Pazzi, M.; Pramauro, E. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 2002. [Google Scholar] [CrossRef]
- Selva Roselin, L.; Rajarajeswari, G.R.; Selvin, R.; Sadasivam, V.; Sivasankar, B.; Rengaraj, K. Sunlight/ZnO-Mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor. Sol. Energy 2002, 73, 281–285. [Google Scholar] [CrossRef]
- Thu, H.B.; Karkmaz, M.; Puzenat, E.; Guillard, C.; Herrmann, J.M. From the fundamentals of photocatalysis to its applications in environment protection and in solar purification of water in arid countries. Res. Chem. Intermed. 2005, 31, 449–461. [Google Scholar] [CrossRef]
- Cabrera-Reina, A.; Miralles-Cuevas, S.; Rivas, G.; Sánchez Pérez, J.A. Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: Are raceway pond reactors a feasible option? Sci. Total. Environ. 2019, 648, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, J.M.; Durán, A.; San Martín, I.; Aguirre, M. Effect of continuous addition of H2O2 and air injection on ferrioxalate-assisted solar photo-Fenton degradation of Orange II. Appl. Catal. B Environ. 2009, 89, 510–518. [Google Scholar] [CrossRef]
- García-Montaño, J.; Pérez-Estrada, L.; Oller, I.; Maldonado, M.I.; Torrades, F.; Peral, J. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J. Photochem. Photobiol. A Chem. 2008, 195, 205–214. [Google Scholar] [CrossRef]
- Berberidou, C.; Kitsiou, V.; Lambropoulou, D.A.; Antoniadis, A.; Ntonou, E.; Zalidis, G.C.; Poulios, I. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. J. Environ. Manag. 2017, 195, 133–139. [Google Scholar] [CrossRef]
- Augugliaro, V.; García-López, E.; Loddo, V.; Malato-Rodríguez, S.; Maldonado, I.; Marcì, G.; Molinari, R.; Palmisano, L. Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Sol. Energy 2005, 79, 402–408. [Google Scholar] [CrossRef]
- McLoughlin, O.A.; Kehoe, S.C.; McGuigan, K.G.; Duffy, E.F.; Al Touati, F.; Gernjak, W.; Oller Alberola, I.; Malato Rodríguez, S.; Gill, L.W. Solar disinfection of contaminated water: A comparison of three small-scale reactors. Sol. Energy 2004, 77, 657–664. [Google Scholar] [CrossRef]
- Freudenhammer, H.; Bahnemann, D.; Bousselmi, L.; Geissen, S.U.; Ghrabi, A.; Saleh, F.; Si-Salah, A.; Siemon, U.; Vogelpohl, A. Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci. Technol. 1997, 35, 149–156. [Google Scholar] [CrossRef]
- Polo-López, M.I.; García-Fernández, I.; Velegraki, T.; Katsoni, A.; Oller, I.; Mantzavinos, D.; Fernández-Ibáñez, P. Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Appl. Catal. B Environ. 2012, 111–112, 545–554. [Google Scholar] [CrossRef]
- Nahim-Granados, S.; Sánchez Pérez, J.A.; Polo-Lopez, M.I. Effective solar processes in fresh-cut wastewater disinfection: Inactivation of pathogenic E. coli O157:H7 and Salmonella enteritidis. Catal. Today 2018, 313, 79–85. [Google Scholar] [CrossRef]
- Aguas, Y.; Hincapie, M.; Fernández-Ibáñez, P.; Polo-López, M.I. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Sci. Total. Environ. 2017, 607–608, 1213–1224. [Google Scholar] [CrossRef]
- Ruzmanova, Y.; Ustundas, M.; Stoller, M.; Chianese, A. Photocatalytic treatment of olive mill wastewater by n-doped titanium dioxide nanoparticles under visible light. Chem. Eng. Trans. 2013, 32, 2233–2238. [Google Scholar] [CrossRef]
- Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [Google Scholar] [CrossRef]
- Brienza, M.; Mahdi Ahmed, M.; Escande, A.; Plantard, G.; Scrano, L.; Chiron, S.; Bufo, S.A.; Goetz, V. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity. Chemosphere 2016, 148, 473–480. [Google Scholar] [CrossRef]
- Onotri, L.; Race, M.; Clarizia, L.; Guida, M.; Alfè, M.; Andreozzi, R.; Marotta, R. Solar photocatalytic processes for treatment of soil washing wastewater. Chem. Eng. J. 2017, 318, 10–18. [Google Scholar] [CrossRef]
- Manenti, D.R.; Soares, P.A.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Boaventura, R.A.R.; Bergamasco, R.; Vilar, V.J.P. Insights into solar photo-Fenton process using iron(III)-organic ligand complexes applied to real textile wastewater treatment. Chem. Eng. J. 2015, 266, 203–212. [Google Scholar] [CrossRef]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. J. Water Process. Eng. 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Pichat, P.; Vannier, S.; Dussaud, J.; Rubis, J.P. Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment. Sol. Energy 2004, 77, 533–542. [Google Scholar] [CrossRef]
- Méndez-Arriaga, F.; Maldonado, M.I.; Gimenez, J.; Esplugas, S.; Malato, S. Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catal. Today 2009, 144, 112–116. [Google Scholar] [CrossRef]
- Foteinis, S.; Monteagudo, J.M.; Durán, A.; Chatzisymeon, E. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci. Total. Environ. 2018, 612, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Ferro, G.; Fiorentino, A.; Alferez, M.C.; Polo-López, M.I.; Rizzo, L.; Fernández-Ibáñez, P. Urban wastewater disinfection for agricultural reuse: Effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Appl. Catal. B Environ. 2015, 178, 65–73. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.; Kumar, A.; Khraisheh, M. Potential use of solar photocatalytic oxidation in removing emerging pharmaceuticals from wastewater: A pilot plant study. Sol. Energy 2018, 172, 128–140. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Sánchez Pérez, J.A.; Malato, S. Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chem. Eng. J. 2017, 318, 161–170. [Google Scholar] [CrossRef]
- Ortega-Gómez, E.; Esteban García, B.; Ballesteros Martín, M.M.; Fernández Ibáñez, P.; Sánchez Pérez, J.A. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Res. 2014, 63, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Polo-López, M.I.; Castro-Alférez, M.; Oller, I.; Fernández-Ibáñez, P. Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chem. Eng. J. 2014, 257, 122–130. [Google Scholar] [CrossRef]
Component | Feature |
---|---|
Mirror design | Parabolic/Dish/Plane |
Tracking system | Automatic/Manual/Fixed |
Catalyst | Dissolved/Suspended/Supported |
Reactor configuration | Single/Parallel/Series |
Wastewater loading | Once-through/Batch |
Flow rate | Volume per time/On-Off |
System pressure | Pumping employed |
Pretreatment | Present/Absent |
Oxidant loading method | Once/Periodically dosed |
PH control | Acidic/Neutral/Basic |
# | Reference | Catalyst Material | Characteristics | Major Results | Solar * |
---|---|---|---|---|---|
1 | Sacco et al., 2018 [48] | N-doped TiO2 | N-doped TiO2 particles immobilized on polystyrene spheres | Inactivation of E. coli in municipal wastewaters | Yes |
2 | Orlandi et al., 2018 [54] | Fe2O3 | PLD synthesized Fe oxide urchin-like particle-assembled coating | Rapid abatement of large quantities of surfactants in industrial wastewaters | Yes |
3 | Wang et al., 2015 [81] | TiO2 with fly ashes | Sol-Gel coating of TiO2 on ashes xenospheres | MB dye degradation under visible-light | No |
4 | Edla et al. 2015 [85] | Co3O4 | PLD synthesized Co oxide urchin-like particle-assembled coating | Enhancement of MB dye degradation under visible light by hierarchical nanostructuring | No |
5 | Mecha et al., 2018 [88] | doped TiO2 | Calcinated powders and ozonation | SODIS of municipal wastewater | Yes |
6 | Patel et al., 2014 [93] | V-N-codoped TiO2 | RF- sputtering of thin films | enhanced MB dye degradation under visible-light | No |
7 | Jaiswal et al., 2015 [94] | Cu-N codoped TiO2 | Sol-gel thin films | Degrade MB dye and p-Nitrophenol solution under UV-VIS light | No |
8 | Jaiswal et al., 2016 [95] | Co-B-codoped TiO2 | Sol-gel thin films | Degradation of organic pollutants (p-nitrophenol and rhodamine B dye) under visible light | No |
9 | Varma et al., 2016 [96] | Ag-doped TiO2 | TiO2 decorated with Ag nanocomposites | Degradation of p-nitrophenol (PNP) and MB dye under visible light | No |
10 | Jing et al., 2014 [97] | Cu2O | Nanocrystals integrated photocatalyst adsorbent (IPCA) | Maximum adsorption capacity evaluation to examine the removal of organic pollutants (HA, CR and MO). | No |
11 | Malato et al., 2016 [99] | TiO2 | Particles in suspension | Strategies to improve quantum yield | Yes |
12 | Niu et a1., 2016 [100] | Bi2O3 | Nanoparticles (tens to hundreds nanometers) | Pentachlorophenol (PCP), trichloroethylene (TCE), and hexachlorocyclohexane (HCH) | No |
13 | Edla et. al., 2017 [101] | Fe2O3 | PLD synthesized Fe oxide urchin-like particle-assembled coating | Enhancement of MB dye degradation under visible light by hierarchical nanostructuring | No |
14 | Fenoll et al., 2012 [102] | ZnO, TiO2, WO3, SnO2 | Micrometric scale particles in suspension | Photodegradation of fenamiphos (pesticide) | Yes |
15 | Borges et al., 2017 [104] | Volcanic ashes | Grinded and sieved in the range 1.40–1.80 mm and 500–850 µm | MB dye degradation | Yes |
16 | Sano et al., 2004 [105] | Pt doped TiO2 | Pt loaded TiO2 synthetized at elevated temperatures | Photocatalytic degradation of volatile organic compounds (VOCs) | Yes |
17 | Vela et al. 2018 [106] | TiO2 and Na2S2O8 | commercial nanopowders with an electron acceptor in solution | Degradation of bisphenols, diamylphthalate, butyl benzylphthalate, methylparaben and ethylparaben in waste water model | Yes |
18 | Rodriguez et al., 2010 [107] | TiO2 and Ferricarboxilate | Ferricarboxilates and commercial TiO2 in combination | Degradation of Bisphenol A in model wastewater | Yes |
19 | Muradov, 1994 [108] | Pt doped TiO2 | Construction of a plate type photoreactor with immobilized TiO2 | Nitroglycerine and Rhodamine dye models degradation | Yes |
20 | Villén et al., 2006 [109] | Ru(II) complex | ruthenium trischelate complex immobilized onto porous silicone | Inactivation of Escherichia coli/faecalis | Yes |
21 | Bansal et al., 2018 [110] | Composite Fe-TiO2 | Spherical beads with average diameter of 1.5 cm | Pharmaceutical wastewaters decontamination | Yes |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Fernandez-Ibanez et al., 1999 [121] | 4-chlorophenol | PTR/CPC | TiO2 supported and suspended | Heterogeneous |
2 | Sano et al., 2004 [105] | gaseous toluene and acetaldehyde | PTR | Pt-TiO2 supported | Heterogeneous |
3 | Klare et al., 2000 [122] | Amines | PTR | TiO2 (P-25) TiO2 (AK1) TiO2 (UV 100) Pt-TiO2 (synth) suspended | Heterogeneous |
4 | Oyama et al., 2004 [123] | Commercial Detergents | PDC | TiO2 (P-25) suspended | Heterogeneous |
5 | Mehos et al., 1992 [78] | trichloroethylene | PTR | TiO2 (P-25) suspended | Heterogeneous |
6 | Minero et al., 1996 [124] | sodium pentachlorophenolate | PTR | TiO2 (P-25) suspended | Heterogeneous |
7 | Bandala et al., 2004 [125] | oxalic acid | PTR/CPC | TiO2 suspended | Heterogeneous |
8 | Malato et al., 1997 [126] | 2,4-dichlorophenol | PTR/CPC | TiO2 (P-25) suspended | Heterogeneous |
9 | Noorjahan et al., 2003 [127] | H-acid | IPC | TiO2 supported | Heterogeneous |
10 | Feitz et al., 2000 [128] | Phenol dichloroacetic acid | PBP (IPC) | TiO2 supported | Heterogeneous |
11 | Chan et al., 2003 [129] | benzoic acid | IPC | TiO2 (P-25) supported | Heterogeneous |
12 | van Well et al., 1997 [130] | dichloroacetic acid | DSS (IPC) | TiO2 (UV 100) suspended | Heterogeneous |
13 | Dillert et al., 1999 [65] | dichloroacetic acid | DSS (IPC)/CPC | TiO2 (P-25) TiO2 (UV 100) suspended | Heterogeneous |
15 | Peill and Hoffmann, 1997 [64] | 4-chlorophenol | Opt. fiber | TiO2 (P-25) supported | Heterogeneous |
16 | Xu et al., 2008 [131] | 4-chlorophenol | Opt. fiber | TiO2 (synth.) supported | Heterogeneous |
17 | Tanveer and Tezcanli Guyer, 2013 [27] | Alkanes, alcohols, carboxylic acids, aromatics, polymers and surfactants | CPC | TiO2 (P-25/PC 500/UV 100/TTP/PC 10/PC 50/Rhodia) | Heterogeneous |
18 | Barwal and Chaudhary, 2016 [3] | Urea, ammonium chloride, sodium acetate, peptone, magnesium hydrogen ortho-phosphate trihydrate, potassium dihydrogen orthophosphate, ferrous sulphate, starch, glucose, yeast and trace nutrients | PTR | TiO2 | Heterogeneous |
19 | Vela et al., 2018 [106] | bisphenol A, bisphenol B, diamylphthalate, butyl benzylphthalate, methylparaben and ethylparaben | CPC | TiO2 alongside an electron acceptor like Na2S2O8 | Heterogeneous |
20 | Rodriguez et al., 2010 [107] | Bisphenol A | CPC | Ferricarboxilate, TiO2 (P25), combinations thereof | Heterogeneous and homogeneous |
21 | Kositzi et al., 2004 [132] | Peptone, Meat extract, Urea, K2HPO4, NaCl, CaCl2.2H2O, Mg2SO4 7H2O | CPC | TiO2 (P-25) suspended Fe(III)/H2O2 photo-Fenton process | Heterogeneous and homogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Augugliaro et al., 2002 [133] | Methyl-orange (azo-dye) Orange II (azo-dye) | CPC | TiO2 (P-25) suspended | Heterogeneous |
2 | Selva Roselin et al., 2002 [134] | Remazol red B (azo-dye) | IPC | ZnO supported | Heterogeneous |
3 | Muradov, 1994 [108] | Nitroglycerine Rhodamine dye | IPC | TiO2 (P-25) Pt-TiO2 supported | Heterogeneous |
4 | Thu et al., 2005 [135] | Formetanate Indigo carmine (indicator dye) | IPC/CPC | TiO2 (PC 500) supported and suspended | Heterogeneous |
6 | Rodríguez-Chueca et al., 2014 [2] | Synthetic wool dying in different colors (yellow, blue and red) | CPC | TiO2 | Heterogeneous |
7 | Sutisna et al., 2017 [68] | Methylene blue dye | IPC | TiO2 | Heterogeneous |
8 | Cabrera-Reina et al., 2019 [136] | Acid Red 1, Acid Yellow 17, Reactive Black 5 and Reactive Orange 1 | CPC/IPC | Fe (II) | Homogeneous |
9 | Monteagudo et al., 2009 [137] | Orange II dye | CPC | Ferrioxalate in solution | Homogeneous |
10 | García-Montaño et al., 2008 [138] | Procion Red H-E7B and Cibacron Red FN-R (azo-dyes) | CPC | Fe(II)/H2O2 photo-Fenton processs | Homogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Fenoll et al., 2012 [102] | Fenamiphos pesticide | CPC | TiO2, ZnO | Heterogeneous |
2 | Berberidou et al., 2017 [139] | Lontrel 100AS commercial herbicide | IPC | Ferrioxalate/TiO2 | Heterogeneous and homogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Augugliaro et al., 2005 [140] | Lincomycin (antibiotic) | CPC | TiO2 (P-25) suspended | Heterogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Sichel et al., 2007 [31] | Escherichia coli | CPC | TiO2 (P-25) supported from colloid | Heterogeneous |
2 | Fernández et al., 2005 [45] | Escherichia coli | CPC | TiO2 (P-25) suspended and support | Heterogeneous |
3 | Villén et al., 2006 [109] | Escherichia coli/faecalis | CPC | RDP2+ (dye) supported | Heterogeneous |
4 | McLoughlin et al., 2004 [141] | Escherichia coli | PTR/CPC | TiO2 (P-25) supported | Heterogeneous |
5 | Freudenhammer et al., 1997 [142] | Simulated bacterial municipal wastewater | IPC | TiO2 (P-25) supported | Heterogeneous |
6 | Polo-López et al., 2012 [143] | Fusarium spores | CPC | Ferrous sulfate heptahydrate | Homogeneous |
7 | Nahim-Granados et al. 2018 [144] | E. coli O157:H7 and Salmonella enteritidis | IPC | Ferrous sulphate heptahydrate and ferric nitrate | Homogeneous |
8 | Aguas et al. 2017 [145] | agricultural pathogenic fungi (Curvularia sp.) | CPC | Ferrous sulfate heptahydrate | Homogeneous |
9 | Rodríguez-Chueca et al., 2014 [2] | E. coli, coliform Enterococcus faecalis | CPC | ferrous sulfate in slurry | Homogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Ruzmanova et al., 2013 [146] | Olive mill wastewater | CPC | TiO2 suspended | Heterogeneous |
2 | Durán et al., 2015 [147] | Beverage industry effluents | CPC | Ferrioxalate, oxalic acid | Homogeneous |
3 | Brienza et al., 2016 [148] | Municipal effluents with 53 micropollutants detection | IPC | HSO−5/Fe+2 and TiO2 | Heterogeneous and homogeneous |
4 | Onotri et al., 2017 [149] | copper, iron, zinc and EDDS | CPC | TiO2 suspended | Heterogeneous |
5 | Orlandi et al., 2018 [54] | surfactant-rich industrial wastewaters | PDC | FeOx or FeCl3 | Heterogeneous and homgeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Manenti et al., 2015 [150] | Textile dyes | CPC | ferric–organic ligand complexes such as oxalic acid, citric acid and EDDS, ferrioxalate | Homogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Gar Alalm et al., 2015 [151] | Chlorpyrifos, lambda-cyhalothrin, and diazinon as major contaminants on pesticides | CPC | Ferrous sulfate hydrate and TiO2 | Homogeneous and heterogeneous |
2 | Pichat et al., 2004 [152] | Pesticides | IPC | TiO2 (PC 500) supported | Heterogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Méndez-Arriaga et al., 2009 [153] | pharmaceuticals present in real wastewater sources | CPC | TiO2 suspended | Heterogeneous |
2 | Bansal et al., 2018 [110] | Pharmaceutical wastewaters | IPC | Composite Fe-TiO2 | Heterogeneous |
3 | Foteinis et al., 2018 [154] | Pharmaceutical wastewaters, i.e., antipyrine | CPC | Ferrous sulfate, oxalic acid | Homogeneous |
4 | Ferro et al., 2015 [155] | multidrug (namely ampicillin, ciprofloxacin and tetracycline) | CPC | Ferrous sulfate and TiO2 | Homogeneous and heterogeneous |
5 | Almomani et al., 2018 [156] | antibiotics, estrogens | CPC | Iron (III) perchlorate hydrate and TiO2 | Homogeneous and heterogeneous |
# | Reference | Pollutant Tested | Solar Collector | Catalyst Material | Catalysis Type |
---|---|---|---|---|---|
1 | Miralles-Cuevas et al., 2017 [157] | Municipal effluents | CPC | Fe2(SO4)3 | Homogeneous |
2 | Ortega-Gómez et al., 2014 [158] | E. coli and total coliforms inactivation | CPC | Ferrous sulfate heptahydrate | Homogeneous |
3 | Polo-López et al., 2014 [159] | phytopathogen fungi spores | CPC | Ferrous sulphate heptahydrate, ferric nitrate and TiO2 | Homogeneous and heterogeneous |
4 | Sacco et al., 2018 [48] | Escherichia coli | CPC | Nitrogen-doped TiO2 | Heterogeneous |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fendrich, M.A.; Quaranta, A.; Orlandi, M.; Bettonte, M.; Miotello, A. Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. Appl. Sci. 2019, 9, 118. https://doi.org/10.3390/app9010118
Fendrich MA, Quaranta A, Orlandi M, Bettonte M, Miotello A. Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. Applied Sciences. 2019; 9(1):118. https://doi.org/10.3390/app9010118
Chicago/Turabian StyleFendrich, Murilo Alexandre, Alberto Quaranta, Michele Orlandi, Marco Bettonte, and Antonio Miotello. 2019. "Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies" Applied Sciences 9, no. 1: 118. https://doi.org/10.3390/app9010118