The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Activated Carbons
2.2. Analytical Methods for Determining the Chemical Properties of Activated Carbons
2.3. Adsorbed Natural Gas System Experiments
3. Results
3.1. Upgrading Activated Carbons
3.2. Characteristics of CH4 Storage by Compressed and Adsorbed
3.3. Methane Storage Capacity at Different Conditions
3.4. Gas Delivery
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bartocci, P.; Zampilli, M.; Bidini, G.; Fantozzi, F. Hydrogen rich gas production through steam gasification of charcoal pellet. Appl. Therm. Eng. 2018, 132, 817–823. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L.; Hussy, I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrog. Energy 2002, 27, 11–12. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A complarative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2016, 67, 597–611. [Google Scholar] [CrossRef]
- Lozano-Castello´a, D.; Alcan˜iz-Monge, J.; de la Casa-Lillo, M.A.; Cazorla-Amoro´s, D.; Linares-Solano, A. Advances in the study of methane storage in porous carboneous materials. Fuel 2002, 81, 1777–1803. [Google Scholar] [CrossRef]
- Ou, X.M.; Zhang, X.L.; Zhang, X.; Zhang, Q. Life cycle GHG of NG-based fuel and electric vehicle in China. Energies 2013, 6, 2644–2662. [Google Scholar] [CrossRef]
- Sapag, K.; Vallone, A.; Blanco, A.G.; Solar, C. Adsorption of methane in porous materials as the basis for the storage of natural gas. In Natural Gas; Intech Open: London, UK, 2010; Chapter 10; pp. 205–244. ISBN 978-953-307-112-1. [Google Scholar]
- Policicchio, A.; Filosa, R.; Abate, S.; Desiderio, G.; Colavita, E. Activated carbon and metal organic framework as adsorbent for low-pressure methane storage application: an overview. J. Porous Mater. 2016, 24, 905–922. [Google Scholar] [CrossRef]
- Moreno-Pirajan, J.C.; Bastidas-Barrance, M.J.; Giraldo, L. Preparation of activated carbons for storage of methane and its study by adsorption calorimetry. J. Therm. Anal. Calorim. 2017, 131, 259–271. [Google Scholar] [CrossRef]
- Choi, P.-S.; Jeong, J.-M.; Choi, Y.-K.; Kim, M.-S.; Shin, G.-J.; Park, S.-J. A review: Methane capture by nanoporous carbon materials for automobiles. Carbon Lett. 2016, 17, 18–28. [Google Scholar] [CrossRef]
- He, Y.B.; Zhou, W.; Qian, G.D.; Chen, B.L. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, S.; Carriveau, R.; Ting, D.S.K. A review of adsorbed natural gas storage technologies. Int. J. Environ. Stud. 2016, 73, 343–356. [Google Scholar] [CrossRef]
- Vasiliev, L.L.; Kanonchik, L.E.; Mishkinis, D.A.; Rabetsky, M.I. Adsorbed natural gas storage and transportation vessels. Int. J. Therm. Sci. 2000, 39, 1047–1055. [Google Scholar] [CrossRef]
- Benaddi, H.; Bandosz, T.J.; Jagiello, J.; Schwarz, J.A.; Rouzaud, J.N.; Legras, D.; Be´guin, F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 2000, 38, 669–674. [Google Scholar] [CrossRef]
- Ros, A.; Lillo-Ro´denas, M.A.; Fuente, E.; Montes-Mora´n, M.A.; Martı´n, M.J.; Linares-Solano, A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere 2006, 65, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, G.; Burres, J.; Yildirim, T. Graphene oxide derived carbons (GODCs): Synthesis and gas adsorption properties. Energy Environ. Sci. 2012, 5, 6453–6459. [Google Scholar] [CrossRef]
- Makal, T.A.; Li, J.-R.; Lu, W.; Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761–7779. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, L.; Yang, J.; Lin, D. Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area. Sci. Total Environ. 2018, 618, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, C.; Li, F.; Cheng, H.-M. Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 2006, 13, 141–146. [Google Scholar] [CrossRef]
- Virla, L.D.; Montes, V.; Wu, J.; Ketep, S.F.; Hill, J.M. Synthesis of porous carbon from petroleum coke using steam, potassium and sodium: Combining treatments to create mesoporosity. Microporous Mesoporous Mater. 2016, 234, 239–246. [Google Scholar] [CrossRef]
- Lu, C.L.; Xu, S.P.; Liu, C.H. The role of K2CO3 during the chemical activation of petroleum coke with KOH. J. Anal. Appl. Pyrolysis 2010, 87, 282–287. [Google Scholar] [CrossRef]
- Patil, K.H.; Sahoo, S. Charge characteristic of adsorbed natural gas storage system based on MAXSORIII. J. Nat. Gas Sci. Eng. 2017, 52, 267–282. [Google Scholar] [CrossRef]
- Romanos, J.; Beckner, M.; Rash, T.; Firlej, L.; Kuchta, B.; Yu, P.; Suppes, G.; Wexler, C.; Pfeifer, P. Nanospace engineering of KOH activated carbon. Nanotechnology 2012, 23, 015401. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.S.; Zaini, M.A.A. Potassium hydroxide activation of activated carbon: A commentary. Carbon Lett. 2015, 16, 275–280. [Google Scholar] [CrossRef]
- Mota, J.P.B.; Rodrigues, A.E.; Saatdjian, E.; Tondeur, D. Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon 1997, 35, 1259–1270. [Google Scholar] [CrossRef]
- Chang, K.J.; Talu, O. Behaviour and performance of adsorptive natural gas storage cylinders during discharge. Appl. Therm. Eng. 1996, 16, 359–374. [Google Scholar] [CrossRef]
- El-Sharkawy, I.I.; Mansour, M.H.; Awad, M.M.; El-Ashry, R. Investigation of Natural Gas Storage through Activated Carbon. J. Chem. Eng. Data 2016, 11, 258–274. [Google Scholar] [CrossRef]
- Ybyraiymkul, D.; Ng, K.C.; Кaltayev, A. Experimental and numerical study of effect of thermal management on storage capacity of the adsorbed natural gas vessel. Appl. Therm. Eng. 2017, 125, 523–531. [Google Scholar] [CrossRef]
- Yue, G.W.; Wang, Z.F.; Tang, X.; Li, H.J.; Xie, C. Physical Simulation of Temperature Influence on Methane Sorption and Kinetics in Coal (II): Temperature Evolvement during Methane Adsorption in Coal Measurement and Modeling. Energy Fuels 2015, 29, 6355–6362. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.H.; Sun, Y.J.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- DeSantis, D.; Mason, J.A.; James, B.D.; Houchins, C.; Long, J.R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 2017, 31, 2024–2032. [Google Scholar] [CrossRef]
- Lee, G.B.; Jung, H.S.; Hong, B.U.; Kim, S.H.; Choi, S.S. Optimization of washing process for the recycling of potassium in the manufacturing of activated carbon. J. Korean Org. Resour. Recyc. Assoc. 2017, 25, 63–71, (Korean with English abstract). [Google Scholar]
- Jian, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Rodriguez-Reinoso, F. Role of chemical activation in the development of carbon porosity. Colloid Surf. A 2004, 241, 15–25. [Google Scholar] [CrossRef]
- Yang, S.L. Natual gas physical properties under high pressure. In Fundamental of Petrophysics, 2nd ed.; Springer: Berlin, Germany, 2017; pp. 34–35. ISBN 978-3-662-55028-1. [Google Scholar]
- Travis, W.; Gadipelli, S.; Guo, Z.X. Superior CO2 adsorption from waste coffee ground derived carbons. RSC Adv. 2015, 5, 29558–29562. [Google Scholar] [CrossRef]
- Judd, R.W.; Gladding, D.T.M.; Hodrien, R.C.; Bates, D.R.; Ingram, J.P.; Allen, M. The Use of a Natural Gas Technology for Large Scale Storage. 1992; pp. 575–579. Available online: http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/43_3_BOSTON_08-98_0575.pdf (accessed on 1 July 2018).
- Kumar, K.V.; Preuss, K.; Titirici, M.-M.; Rodríguez-Reinoso, F. Nanoporous Materials for the Onboard Storage of Natural Gas. Chem. Rev. 2017, 117, 1796–1825. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; George, T. The performance of commercial activated carbon absorbent for adsorbed natural gas storage. Int. J. Recent Res. Appl. Stud. 2011, 9, 225–230. [Google Scholar]
Sample | Ultimate Analysis (wt.%) | Proximate Analysis (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
Carbon | Hydrogen | Oxygen | Nitrogen | Sulfur | Volatile | Fixed Carbon | Ash | |
AC-WR | 71.60 | 1.60 | 17.20 | 0.80 | n.d. | 18.56 | 74.68 | 6.76 |
AC-CR | 89.03 | 0.30 | 2.50 | 0.00 | n.d. | 5.14 | 92.73 | 2.12 |
Sample | SBET (m2g−1) | VMicro (cm3g−1) | VMeso (cm3g−1) | Rmicro (%) | Rmeso (%) | Methane Storage Capacity (g-CH4/g-AC) |
---|---|---|---|---|---|---|
AC-WR | 1152 | 0.50 | 0.59 | 46.1 | 53.9 | 0.17 |
AC-WA | 3052 | 0.04 | 2.37 | 1.73 | 98.3 | 0.32 |
AC-CR | 1068 | 0.35 | 0.11 | 75.5 | 24.5 | 0.11 |
AC-CA | 2258 | 0.48 | 0.43 | 52.5 | 47.5 | 0.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.E.; Lee, G.B.; Hwang, S.Y.; Kim, J.H.; Hong, B.U.; Kim, H.; Kim, S. The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH. Appl. Sci. 2018, 8, 1596. https://doi.org/10.3390/app8091596
Park JE, Lee GB, Hwang SY, Kim JH, Hong BU, Kim H, Kim S. The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH. Applied Sciences. 2018; 8(9):1596. https://doi.org/10.3390/app8091596
Chicago/Turabian StylePark, Jung Eun, Gi Bbum Lee, Sang Youp Hwang, Ji Hyun Kim, Bum Ui Hong, Ho Kim, and Seokhwi Kim. 2018. "The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH" Applied Sciences 8, no. 9: 1596. https://doi.org/10.3390/app8091596
APA StylePark, J. E., Lee, G. B., Hwang, S. Y., Kim, J. H., Hong, B. U., Kim, H., & Kim, S. (2018). The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH. Applied Sciences, 8(9), 1596. https://doi.org/10.3390/app8091596