Hydrogeological Study of the Glacial—Fluvioglacial Territory of Grandate (Como, Italy) and Stochastical Modeling of Groundwater Rising
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geology of the Study Area
2.2. Conceptual Site Model Reconstruction
2.3. Mathematical Model
2.4. Stochastic Analysis
3. Results
3.1. Numerical Model
3.2. Stochastic Analisys
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilkinson, B. Rising groundwater levels in London and possible effects on engineering structures. In Proceedings of the 18th Congress of the International Association of Hydrogeologists, Cambridge, UK, 8–13 September 1985; pp. 145–156. [Google Scholar]
- Lamé, A. Modélisation Hydrogéologique des Aquifères de Paris et Impacts des Aménagements du Sous-Sol sur les Écoulements Souterrains. Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France, 2013; pp. 10–11. [Google Scholar]
- Vasquez-Sune, E.; Sanchez-Vila, X.; Carrera, J.; Marizza, M.; Arandes, R.; Gutierrez, L.A.; Chilton, J. Rising groundwater levels in Barcellona: Evolution and effects on urban structures. In Groundwater in the Urban Environment: Problems, Process and Management; Balkema: Rotterdam, The Netherlands, 1997; pp. 267–271. [Google Scholar]
- Beretta, G.P.; Avanzini, M.; Pagotto, A. Managing groundwater rise: Experimental results and modelling of water pumping from a quarry lake in Milan urban area (Italy). Environ. Geol. 2004, 45, 600–608. [Google Scholar] [CrossRef]
- Dean, J.; Sholley, M. Groundwater basin recovery in urban areas and implications for engineering projects. In Engineering Geology for Tomorrow’s Cities; IAEG: Dublin, Ireland, 2006. [Google Scholar]
- Kasenow, M. Applied Ground-Water Hydrology and Well Hydraulics, 3rd ed.; Water Resources Pubblication: Littleton, CO, USA, 2010; ISBN 1-887201-28-9. [Google Scholar]
- Winter, T. Numerical Simulation Analysis of the Interaction of Lakes and Groundwater; Professional Paper 1001; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Anderson, M.P.; Cheng, X. Long- and short-term transience in a groundwater/lake system in Wisconsin, USA. J. Hydrol. 1993, 145, 1–18. [Google Scholar] [CrossRef]
- Colombo, L.; Francani, V. Analytical method for stagnation point calculation: Theoretical developments and application to a hydraulic barrier design (Sicily, Italy). Q. J. Eng. Geol. Hydrogeol. 2014, 47. [Google Scholar] [CrossRef]
- Colombo, L.; Cantone, M.; Alberti, L.; Francani, V. Analytical solutions for multiwell hydraulic barrier capture zone defining. Ital. J. Eng. Geol. Environ. 2012, 2. [Google Scholar] [CrossRef]
- The Flow of Homogeneous Fluids through Porous Media. Available online: https://catalog.hathitrust.org/Record/009073808 (accessed on 13 July 2018).
- Guymon, G.L. Hydraulics of groundwater. Adv. Water Resour. 1980, 3, 193. [Google Scholar] [CrossRef]
- Strack, O.D.L. Groundwater Mechanics; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; ISBN 0-13-365412-5. [Google Scholar]
- Christ, J.A.; Goltz, M.N. Hydraulic containment: Analytical and semi-analytical models for capture zone curve delineation. J. Hydrol. 2002, 262, 224–244. [Google Scholar] [CrossRef]
- Christ, J.A.; Goltz, M.N. Containment of groundwater contamination plumes: Minimizing drawdown by aligning capture wells parallel to regional flow. J. Hydrol. 2004, 286, 52–68. [Google Scholar] [CrossRef]
- Raychaudhuri, S. Introduction to Monte Carlo simulation. In Proceedings of the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 17–21. [Google Scholar] [CrossRef]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; van der Sluijs, J.P.; van Asselt, M.B.A.; Janssen, P.; Krayer von Krauss, M.P. Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integr. Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, P.; Francani, V. Depletion risk assessment of the Nossana Spring (Bergamo, Italy) based on the stochastic modeling of recharge. Hydrogeol. J. 2010, 18, 325–337. [Google Scholar] [CrossRef]
- Troldborg, M.; Nowak, W.; Tuxen, N.; Bjerg, P.L.; Helmig, R.; Binning, P.J. Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Penck, A.; Brückner, E. Die Alpen im Eiszeitalter; Tauchnitz: Leipzig, Germany, 1909. [Google Scholar]
- Ugolini, F.; Orombelli, G. Notizie preliminary sulle caratteristiche dei depositi glaciali e fluvioglaciali tra l’Adda e l’Olona in Lombardia. Rend. Ist. Lomb. Sc. Lett. 1968, 102. [Google Scholar]
- Billard, A. Paléosols quaternaires de l’Alta Pianura de Milan, interprétation stratigraphique et paléoclimatique. Quaternaire 1973, 10, 267–286. [Google Scholar] [CrossRef]
- Bini, A. L’apparato Glaciale Wurmiano di Como. Ph.D. Thesis, University of Milan, Milan, Italy, 1987. [Google Scholar]
- Bini, A.; Felber, M.; Pomicino, N.; Zuccoli, L. La massima estensione dei ghiacciai (MEG) nel territorio compreso tra il Lago di Como, il Lago Maggiore e le rispettive zone di anfiteatro. Geol. Insubrica 1996, 1, 65–77. [Google Scholar]
- Bini, A. Stratigraphy, chronology and palaeogeography of Quaternary deposits of the area between the Ticino and Olona rivers (Italy-Switzerland). Geol. Insubrica 1997, 2, 21–46. [Google Scholar]
- CAP. Consorzio per l’acqua potabile ai comuni della provincia di Milano. In Depauperamento Delle Risorse Idriche Sotterranee nel Comprensorio Della Brianza a Nord del Canale Villoresi; CAP: Milano, Italy, 1972. [Google Scholar]
- Cavallin, A.; Francani, V.; Mazzarella, S. Studio idrogeologico della pianura compresa fra Adda e Ticino. Costruzioni 1983, 326, 39. [Google Scholar]
- Francani, V.; Beretta, G.P.; Scesi, L. Caratteri idrogeologici della parte meridionale della Provincia di Como. Le Strade 1981, 1199, 1–20. [Google Scholar]
- Francani, V.; Beretta, G.P.; Scesi, L. Studio idrogeologico del lago Alserio (Provincia di Como). Costruzioni 1983, 334–335, 1–27. [Google Scholar]
- Beretta, G.P. Studio idrogeologico del territorio canturino (CO). Costruzioni 1984, 344. [Google Scholar]
- Brenna, S. Suoli e Paesaggi Della Provincia di Brescia; Ersaf: Milan, Italy, 2004. [Google Scholar]
- Bini, A.; Sciunnach, D.; Bersezio, R.; Scardia, G.; Tomasi, F. Note Illustrative Della Carta Geologica D’Italia Alla Scala 1:50’000–096 Foglio Seregno; Regione Lombardia: Milano, Italy, 2005. [Google Scholar]
- Infrastrutture Ferroviarie Strategiche Definite Dalla Legge Obiettivo n. 443/01 Linea a.v./a.c. Torino—Venezia Tratta Milano—Verona Lotto Funzionale Brescia-Verona Progetto Definitivo-Studio Geologico-Idrogeologico di Dettaglio. Available online: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiHrNHvyoTdAhVCfd4KHXWtB7EQFjAAegQIARAC&url=http%3A%2F%2Fwww.va.minambiente.it%2FFile%2FDocumento%2F163751&usg=AOvVaw0TA50q8jqc688RSoblIlHI (accessed on 13 July 2018).
- ARPA Lombardia. Stato Delle Acque Sotterranee, Area Idrogeologica Oglio-Mincio. Rapporto Annuale 2014; ARPA Lombardia: Milan, Italy, 2015. [Google Scholar]
- Alba, M. Studio Idrogeologico Della Parte Meridionale Della Provincia di Como; Politecnico di Milano: Milan, Italy, 2004. [Google Scholar]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A new Triangular Irregular Network of Italy. Ann. Geophys. 2007, 50, 407–425. [Google Scholar] [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.P.; Munter, J.A. Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets. Water Resour. Res. 1981, 17, 1139–1150. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods 6-A16; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2005.
- Genoni, P. Corsi D’acqua Principali Della Provincia di Milano; ARPA Lombardia: Milano, Italy, 2004. [Google Scholar]
- Alberti, L.; Cantone, M.; Colombo, L.; Lombi, S.; Piana, A. Numerical modeling of regional groundwater flow in the Adda-Ticino Basin: Advances and new results. Rend. Online Soc. Geol. Ital. 2016, 41, 10–13. [Google Scholar] [CrossRef]
- Doherty, J.E. Calibration and Uncertainty Analysis for Complex Environmental Models—PEST: Complete Theory and What it Means for Modelling the Real World; Watermark Numerical Computing: Brisbane, Australia, 2015; ISBN 978-0-9943786-0-6. [Google Scholar]
- Colombo, L.; Gattinoni, P.; Scesi, L. Stochastic modelling of groundwater flow for hazard assessment along the underground infrastructures in Milan (northern Italy). Tunn. Undergr. Space Technol. 2018, 79, 110–120. [Google Scholar] [CrossRef]
- Doherty, J.E. PEST, Model-Independent Parameter Estimation, User Manunal, 5th ed.; Watermark Numerical Computing: Brisbane, Australia, 1989. [Google Scholar]
- Alberti, L.; Francani, V. Studio idrogeologico sulle cause del sollevamento della falda nell’area milanese. Geoing. Ambient. Min. 2001, 104, 257–264. [Google Scholar]
Statistical Indicators | Value |
---|---|
Target Number | 28 |
Observation Range (m) | 68.39 |
Minimum Residual (m) | −1.09 |
Maximum Residual (m) | 2.27 |
Residual Mean [M] (m) | −0.06 |
Root Mean Square error [RMS] (m) | 0.63 |
Mean Absolute error [MA] (m) | 0.38 |
Mean Absolute error/Range (calibration fit) | 0.6% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Licata, I.; Colombo, L.; Francani, V.; Alberti, L. Hydrogeological Study of the Glacial—Fluvioglacial Territory of Grandate (Como, Italy) and Stochastical Modeling of Groundwater Rising. Appl. Sci. 2018, 8, 1456. https://doi.org/10.3390/app8091456
La Licata I, Colombo L, Francani V, Alberti L. Hydrogeological Study of the Glacial—Fluvioglacial Territory of Grandate (Como, Italy) and Stochastical Modeling of Groundwater Rising. Applied Sciences. 2018; 8(9):1456. https://doi.org/10.3390/app8091456
Chicago/Turabian StyleLa Licata, Ivana, Loris Colombo, Vincenzo Francani, and Luca Alberti. 2018. "Hydrogeological Study of the Glacial—Fluvioglacial Territory of Grandate (Como, Italy) and Stochastical Modeling of Groundwater Rising" Applied Sciences 8, no. 9: 1456. https://doi.org/10.3390/app8091456
APA StyleLa Licata, I., Colombo, L., Francani, V., & Alberti, L. (2018). Hydrogeological Study of the Glacial—Fluvioglacial Territory of Grandate (Como, Italy) and Stochastical Modeling of Groundwater Rising. Applied Sciences, 8(9), 1456. https://doi.org/10.3390/app8091456