Self-Powered Fast Brazing of Ti-6Al-4V Using Ni/Al Reactive Multilayer Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasma Coating and Preparation of RMF
2.2. Brazing
2.3. Reaction Temperature Evolution
2.4. Characterization
3. Results and Discussion
3.1. Characterization of RMF and BAl-Coated Ti64
3.2. Elemental Profiles and Temperature Evolution
3.3. Mechanical Properties
3.4. Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bar-Cohen, Y.; Olorunsola, A.K.; Badescu, M.; Bao, X.; Sherrit, S. Simultaneous sealing and external surface sterilization of containers with samples. NASA Tech. Briefs 2008, 32, 38–40. [Google Scholar]
- Sen, S.; Lake, M.; Wilden, J.; Schaaf, P. Synthesis and characterization of ti/al reactive multilayer films with various molar ratios. Thin Solid Films 2017, 631, 99–105. [Google Scholar] [CrossRef]
- Adams, D.P. Reactive multilayers fabricated by vapor deposition: A critical review. Thin Solid Films 2015, 576, 98–128. [Google Scholar] [CrossRef]
- Simoes, S.; Ramos, A.S.; Viana, F.; Vieira, M.T.; Vieira, M.F. Joining of tial to steel by diffusion bonding with Ni/Ti reactive multilayers. Metals 2016, 6, 96. [Google Scholar] [CrossRef]
- Longtin, R.; Hack, E.; Neuenschwander, J.; Rusch, J. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology. Adv. Mater. 2011, 23, 5812–5816. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, J. Bonding silicon wafers with reactive multilayer foils. Sens. Actuators A Phys. 2008, 141, 476–481. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Bridges, D.; Peng, P.; Lawrie, B.; Feng, Z.; Hu, A. Zero-dimensional to three-dimensional nanojoining: Current status and potential applications. RSC Adv. 2016, 6, 75916–75936. [Google Scholar] [CrossRef]
- Gunduz, I.E.; Kyriakou, A.; Vlachos, N.; Kyratsi, T.; Doumanidis, C.C.; Son, S.; Rebholz, C. Spark ignitable ni-al ball-milled powders for bonding applications. Surf. Coat. Technol. 2014, 260, 396–400. [Google Scholar] [CrossRef]
- Swiston, A.J.; Hufnagel, T.C.; Weihs, T.P. Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 2003, 48, 1575–1580. [Google Scholar] [CrossRef]
- Hooper, R.J.; Adams, D.P.; Hirschfeld, D.; Manuel, M.V. The effect of substrate microstructure on the heat-affected zone size in sn-zn alloys due to adjoining Ni-Al reactive multilayer foil reaction. J. Electron. Mater. 2016, 45, 1–11. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Yang, L.; Hu, A. Reaction-assisted diffusion bonding of ti6al4v alloys with Ti/Ni nanostructured multilayers. J. Mater. Process. Technol. 2018. [Google Scholar] [CrossRef]
- Resnik, D.; Vrtačnik, D.; Aljančič, U.; Mozek, M.; Peni, S.; Amon, S. Influence of mechanical stress on adhesion properties of DC magnetron sputtered Ti/NiV/Ag layers on N+ Si substrate. Microelectron. Eng. 2008, 85, 1603–1607. [Google Scholar] [CrossRef]
- Weihs, T.P. Fabrication and characterization of reactive multilayer films and foils. In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties; Woodhead Publishing Limited: Philadelphia, PA, USA, 2014; pp. 160–243. [Google Scholar]
- Fritz, G.M.; Spey, S.J., Jr.; Grapes, M.D.; Weihs, T.P. Thresholds for igniting exothermic reactions in al/ni multilayers using pulses of electrical, mechanical, and thermal energy. J. Appl. Phys. 2013, 113, 14901. [Google Scholar] [CrossRef]
- Xu, R.G.; Falk, M.L.; Weihs, T.P. Interdiffusion of ni-al multilayers: A continuum and molecular dynamics study. J. Appl. Phys. 2013, 114, 163511. [Google Scholar] [CrossRef]
- Miura, S.; Ohashi, T.; Mishima, Y. Amount of liquid phase during reaction synthesis of nickel aluminides. Intermetallics 1997, 5, 45–59. [Google Scholar] [CrossRef]
- Turlo, V.; Politano, O.; Baras, F. Alloying propagation in nanometric Ni/Al multilayers: A molecular dynamics study. J. Appl. Phys. 2017, 121, 055304. [Google Scholar] [CrossRef]
- Rogachev, A.S.; Vadchenko, S.G.; Baras, F.; Politano, O.; Rouvimov, S.; Sachkova, N.V.; Mukasyan, A.S. Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils. Acta Mater. 2014, 66, 86–96. [Google Scholar] [CrossRef]
- Hdz-García, H.M.; Martinez, A.I.; Muñoz-Arroyo, R.; Acevedo-Dávila, J.L.; García-Vázquez, F.; Reyes-Valdes, F.A. Effects of silicon nanoparticles on the transient liquid phase bonding of 304 stainless steel. J. Mater. Sci. Technol. 2014, 30, 259–262. [Google Scholar] [CrossRef]
- Fujiwara, K.; Horita, Z. Measurement of intrinsic diffusion coefficients of al and Ni in ni3al using ni/nial diffusion couples. Acta Mater. 2002, 50, 1571–1579. [Google Scholar] [CrossRef]
- Janssen, M.M.P. Diffusion in the nickel-rich part of the Ni−Al system at 1000° to 1300 °C; Ni3Al layer growth, diffusion coefficients, and interface concentrations. Metall. Trans. 1973, 4, 1623–1633. [Google Scholar]
- Bridges, D.; Rouleau, C.; Gosser, Z.; Hong, K.; Cheng, J.; Zhang, Z.; Smith, C.; Bar-Cohen, Y.; Hu, A. Prepartation of thick Ni/Al reactive multilayer films and prospective use for self-powered brazing of Ti-6Al-4V. In Proceedings of the International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018; ASME: College Station, TX, USA, 2018. [Google Scholar]
- Pochapsky, T.E. Heat capacity and resistance measurements for aluminum and lead wires. Acta Metall. 1953, 1, 747–751. [Google Scholar] [CrossRef]
- Buyco, E.H.; Davis, F.E. Specific heat of aluminum from zero to its melting temperature and beyond. Equation for representation of the specific heat of solids. J. Chem. Eng. Data 1970, 15, 518–523. [Google Scholar] [CrossRef]
- Chase, M.W. NIST-JANAF Themochemical Tables, 4th ed.; Journal of Physical Chemistry Reference Data; American Institute of Physics for the National Institute of Standards and Technology: Washington, DC, USA, 1998. [Google Scholar]
- Bartsch, H.; Manuel, J.M.; Grieseler, R. Influence of nanoscaled surface modification on the reaction of Al/Ni multilayers. Technologies 2017, 5, 79. [Google Scholar] [CrossRef]
- Wang, J.; Besnoin, E.; Knio, O.M.; Weihs, T.P. Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater. 2004, 52, 5265–5274. [Google Scholar] [CrossRef]
- Woll, K.; Bergamaschi, A.; Avchachov, K.; Djurabekova, F.; Gier, S.; Pauly, C.; Leibenguth, P.; Wagner, C.; Nordlund, K.; Mucklich, F. Ru/Al multilayers integrate maximum energy density and ductility for reactive materials. Sci. Rep. 2016, 6, 19535. [Google Scholar] [CrossRef] [PubMed]
Material | Element Composition (at%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | V | |||||
Ti64 | 90 | 6 | 4 | ||||
Al | Si | Cu | Fe | Mg | Mn | Zn | |
BAlSi-4 | 86.45 | 12.0 | 0.3 | 0.8 | 0.1 | 0.15 | 0.2 |
Material | Length (mm) | Width (mm) | Thickness (mm) | Thermal Conductivity (W/m-K) | Density (g/cm3) | CTE (10−6 K−1) | Heat Capacity (J/g-K) |
---|---|---|---|---|---|---|---|
Ti-6Al-4V | 30 | 3 | 0.44 | 6.7 | 4.43 | 8.6 | 0.526 |
BAlSi-4 | 3 | 3 | 0.1 | 205 | 2.66 | 21 | 0.9 |
RMF | 3 | 3 | 0.135 | 76 | 4.91 | 12.5 | 0.536 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridges, D.; Rouleau, C.; Gosser, Z.; Smith, C.; Zhang, Z.; Hong, K.; Cheng, J.; Bar-Cohen, Y.; Hu, A. Self-Powered Fast Brazing of Ti-6Al-4V Using Ni/Al Reactive Multilayer Films. Appl. Sci. 2018, 8, 985. https://doi.org/10.3390/app8060985
Bridges D, Rouleau C, Gosser Z, Smith C, Zhang Z, Hong K, Cheng J, Bar-Cohen Y, Hu A. Self-Powered Fast Brazing of Ti-6Al-4V Using Ni/Al Reactive Multilayer Films. Applied Sciences. 2018; 8(6):985. https://doi.org/10.3390/app8060985
Chicago/Turabian StyleBridges, Denzel, Christopher Rouleau, Zachary Gosser, Cary Smith, Zhili Zhang, Kunlun Hong, Jinquan Cheng, Yoseph Bar-Cohen, and Anming Hu. 2018. "Self-Powered Fast Brazing of Ti-6Al-4V Using Ni/Al Reactive Multilayer Films" Applied Sciences 8, no. 6: 985. https://doi.org/10.3390/app8060985
APA StyleBridges, D., Rouleau, C., Gosser, Z., Smith, C., Zhang, Z., Hong, K., Cheng, J., Bar-Cohen, Y., & Hu, A. (2018). Self-Powered Fast Brazing of Ti-6Al-4V Using Ni/Al Reactive Multilayer Films. Applied Sciences, 8(6), 985. https://doi.org/10.3390/app8060985