Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation
Abstract
:Featured Application
Abstract
1. Introduction
2. Literature Review
2.1. Data Acquisition Process for PCAM
2.2. Surface Model Creation Techniques for PCAM
3. Method
3.1. Parametric-Equation-Based Approach
3.2. Algorithmic Approach
Algorithm 1 Point-cloud Creation Algorithm | ||
1 | Define: Center Point Pc = (Pcx, Pcy) ∈ ℜ2, Length d > 0, Initial Angle α ∈ ℜ | |
2 | Define: Instantaneous Distances (ri ∈ ℜ | i = 1, ..., n) | |
3 | Define: Rotational Angles (ρi ∈ ℜ| i = 1, ..., n) | |
4 | Calculate: P0 = (P0x, P0y) so that and | |
5 | Iterate: | For i = 1, ..., n |
Rotate P0 by an angle ρi around Pc in the counter-clockwise direction to create Pi = (Pix, Piy) so that and Extend Pi to Pei that is point on the line PcPi at a distance ri from Pc and | ||
End For | ||
6 | Output: Point-Cloud, PC = {Pei | i = 1, ..., n} |
4. Cultural Heritage Preservation
4.1. Classification of Ainu Motifs
4.2. Point-Cloud Creation
4.3. CAD Modeling, Triangulation Modeling and AM
5. Concluding Remarks
Author Contributions
Conflicts of Interest
Appendix A. Details of Equation-Based Point-Clouds
References
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Bourell, D.L.; Rosen, D.W.; Leu, M.C. The Roadmap for Additive Manufacturing and Its Impact. 3D Print. Addit. Manuf. 2014, 1, 6–9. [Google Scholar] [CrossRef]
- Hirz, M.; Rossbacher, P.; Gulanová, J. Future trends in CAD—From the perspective of automotive industry. Comput.-Aided Des. Appl. 2017, 14, 734–741. [Google Scholar] [CrossRef]
- Yap, Y.L.; Tan, Y.S.; Tan, H.K.; Peh, Z.K.; Low, X.Y.; Yeong, W.Y.; Tan, C.S.; Laude, A. 3D printed bio-models for medical applications. Rapid Prototyp. J. 2017, 23, 227–235. [Google Scholar] [CrossRef]
- Hieu, L.C.; Zlatov, N.; Vander Sloten, J.; Bohez, E.; Khanh, L.; Binh, P.H.; Oris, P.; Toshev, Y. Medical rapid prototyping applications and methods. Assem. Autom. 2005, 25, 284–292. [Google Scholar] [CrossRef]
- Sun, W.; Starly, B.; Nam, J.; Darling, A. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput.-Aided Des. 2005, 37, 1097–1114. [Google Scholar] [CrossRef]
- Mannoor, M.S.; Jiang, Z.; James, T.; Kong, Y.L.; Malatesta, K.A.; Soboyejo, W.O.; Verma, N.; Gracias, D.H.; McAlpine, M.C. 3D Printed Bionic Ears. Nano Lett. 2013, 13, 2634–2639. [Google Scholar] [CrossRef] [PubMed]
- Steffan, D.; Dominic, E. A CAD and AM process for maxillofacial prostheses bar-clip retention. Rapid Prototyp. J. 2016, 22, 170–177. [Google Scholar] [CrossRef]
- Luximon, Y.; Ball, R.M.; Chow, E.H.C. A design and evaluation tool using 3D head templates. Comput.-Aided Des. Appl. 2016, 13, 153–161. [Google Scholar] [CrossRef]
- Jung, W.; Park, S.; Shin, H. Combining volumetric dental CT and optical scan data for teeth modeling. Comput.-Aided Des. 2015, 67–68, 24–37. [Google Scholar] [CrossRef]
- Urbanic, R.J. From thought to thing: Using the fused deposition modeling and 3D printing processes for undergraduate design projects. Comput.-Aided Des. Appl. 2016, 13, 768–785. [Google Scholar] [CrossRef]
- Galina, L.; Na, X. Academic library innovation through 3D printing services. Libr. Manag. 2017, 38, 208–218. [Google Scholar] [CrossRef]
- Heather, M.M.-L. Makers in the library: Case studies of 3D printers and maker spaces in library settings. Libr. Hi Tech 2014, 32, 583–593. [Google Scholar] [CrossRef]
- Wannarumon, S.; Bohez, E.L.J. A New Aesthetic Evolutionary Approach for Jewelry Design. Comput.-Aided Des. Appl. 2006, 3, 385–394. [Google Scholar] [CrossRef]
- 3DR Holdings, LLC. 3D Printed Clothing. October 2017. Available online: https://3dprint.com/tag/3d-printed-clothing/ (accessed on 15 November 2017).
- Balance, N. The Future of Running Is Here. April 2016. Available online: https://www.newbalance.com/article?id=4041 (accessed on 16 November 2017).
- i.materialize. 3D Printed Fashion: 10 Amazing 3D Printed Dresses. 2017. Available online: https://i.materialise.com/blog/3d-printed-fashion-dresses/ (accessed on 15 November 2017).
- Nike. Nike Debuts First-Ever Football Cleat Built Using 3D Printing Technology. February 2013. Available online: https://news.nike.com/news/nike-debuts-first-ever-football-cleat-built-using-3d-printing-technology (accessed on 16 November 2017).
- Sun, J.; Zhou, W.; Yan, L.; Huang, D.; Lin, L.Y. Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 2018, 220 (Suppl. C), 1–11. [Google Scholar] [CrossRef]
- Lin, C. 3D Food Printing: A Taste of the Future. J. Food Sci. Educ. 2015, 14, 86–87. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Alves, J.L. Low-cost 3D food printing. Ciênc. Tecnol. Mater. 2017, 29, e265–e269. [Google Scholar] [CrossRef]
- Sakin, M.; Kiroglu, Y.C. 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia 2017, 134 (Suppl. C), 702–711. [Google Scholar] [CrossRef]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151 (Suppl. C), 292–299. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.; Thorpe, T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012, 21 (Suppl. C), 262–268. [Google Scholar] [CrossRef] [Green Version]
- Scopigno, R.; Cignoni, P.; Pietroni, N.; Callieri, M.; Dellepiane, M. Digital Fabrication Techniques for Cultural Heritage: A Survey. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2017; Volume 36, pp. 6–21. [Google Scholar] [CrossRef]
- Conner, B.P.; Manogharan, G.P.; Meyers, K.L. An assessment of implementation of entry-level 3D printers from the perspective of small businesses. Rapid Prototyp. J. 2015, 21, 582–597. [Google Scholar] [CrossRef]
- Holzmann, P.; Breitenecker, R.J.; Soomro, A.A.; Schwarz, E.J. User entrepreneur business models in 3D printing. J. Manuf. Technol. Manag. 2017, 28, 75–94. [Google Scholar] [CrossRef]
- Camille, B. What are you printing? Ambivalent emancipation by 3D printing. Rapid Prototyp. J. 2015, 21, 572–581. [Google Scholar] [CrossRef]
- James, D.W.; Belblidia, F.; Eckermann, J.E.; Sienz, J. An innovative photogrammetry color segmentation based technique as an alternative approach to 3D scanning for reverse engineering design. Comput.-Aided Des. Appl. 2017, 14, 1–16. [Google Scholar] [CrossRef]
- Masuda, H.; Niwa, T.; Tanaka, I.; Matsuoka, R. Reconstruction of Polygonal Faces from Large-Scale Point-Clouds of Engineering Plants. Comput.-Aided Des. Appl. 2015, 12, 555–563. [Google Scholar] [CrossRef]
- Krznar, N.; Pilipović, A.; Šercer, M. Additive Manufacturing of Fixture for Automated 3D Scanning—Case Study. Procedia Eng. 2016, 149 (Suppl. C), 197–202. [Google Scholar] [CrossRef]
- Várady, T.; Martin, R.R.; Cox, J. Reverse engineering of geometric models—An introduction. Comput.-Aided Des. 1997, 29, 255–268. [Google Scholar] [CrossRef]
- Paulic, M.; Irgolic, T.; Balic, J.; Cus, F.; Cupar, A.; Brajlih, T.; Drstvensek, I. Reverse Engineering of Parts with Optical Scanning and Additive Manufacturing. Procedia Eng. 2014, 69 (Suppl. C), 795–803. [Google Scholar] [CrossRef]
- Nooran, R. 3D Printing: Technology, Applications, and Selection, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yang, J.; Cao, Z.; Zhang, Q. A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 2016, 346–347 (Suppl. C), 163–179. [Google Scholar] [CrossRef]
- Li, W.; Song, P. A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model. Pattern Recognit. Lett. 2015, 65 (Suppl. C), 88–94. [Google Scholar] [CrossRef]
- Zhao, X.; Ilieş, H.T. Learned 3D shape descriptors for classifying 3D point cloud models. Comput.-Aided Des. Appl. 2017, 14, 507–515. [Google Scholar] [CrossRef]
- Watanabe, T.; Niwa, T.; Masuda, H. Registration of Point-Clouds from Terrestrial and Portable Laser Scanners (Special Issue on Digital Engineering for Complex Shapes). Int. J. Autom. Technol. 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Syed, H.M.; Mohammed, A.M.; Abdulrahman, M.A.-A. The influence of surface topology on the quality of the point cloud data acquired with laser line scanning probe. Sens. Rev. 2014, 34, 255–265. [Google Scholar] [CrossRef]
- Lee, K.H.; Woo, H. Direct integration of reverse engineering and rapid prototyping. Comput. Ind. Eng. 2000, 38, 21–38. [Google Scholar] [CrossRef]
- Fayolle, P.-A.; Pasko, A. An evolutionary approach to the extraction of object construction trees from 3D point clouds. Comput.-Aided Des. 2016, 74 (Suppl. C), 1–17. [Google Scholar] [CrossRef]
- Schwartz, A.; Schneor, R.; Molcho, G.; Weiss Cohen, M. Surface detection and modeling of an arbitrary point cloud from 3D sketching. Comput.-Aided Des. Appl. 2017, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Hou, W.; Zhang, H. An improved virtual edge approach to slicing of point cloud for additive manufacturing. Comput.-Aided Des. Appl. 2017, 1–7. [Google Scholar] [CrossRef]
- Huang, H.; Mok, P.Y.; Kwok, Y.L.; Au, J.S. Automatic Block Pattern Generation from a 3D Unstructured Point Cloud. Res. J. Text. Appar. 2010, 14, 26–37. [Google Scholar] [CrossRef]
- Peternell, M.; Steiner, T. Reconstruction of piecewise planar objects from point clouds. Comput.-Aided Des. 2004, 36, 333–342. [Google Scholar] [CrossRef]
- Pralay, P. An easy rapid prototyping technique with point cloud data. Rapid Prototyp. J. 2001, 7, 82–90. [Google Scholar] [CrossRef]
- Oropallo, W.; Piegl, L.A.; Rosen, P.; Rajab, K. Generating point clouds for slicing free-form objects for 3-D printing. Comput.-Aided Des. Appl. 2017, 14, 242–249. [Google Scholar] [CrossRef]
- Oropallo, W.; Piegl, L.A.; Rosen, P.; Rajab, K. Point cloud slicing for 3-D printing. Comput.-Aided Des. Appl. 2018, 15, 90–97. [Google Scholar] [CrossRef]
- Ma, J.; Chen, J.S.; Feng, H.Y.; Wang, L. Automatic construction of watertight manifold triangle meshes from scanned point clouds using matched umbrella facets. Comput.-Aided Des. Appl. 2017, 14, 742–750. [Google Scholar] [CrossRef]
- Zhong, S.; Yang, Y.; Huang, Y. Data Slicing Processing Method for RE/RP System Based on Spatial Point Cloud Data. Comput.-Aided Des. Appl. 2014, 11, 20–31. [Google Scholar] [CrossRef]
- Yang, P.; Schmidt, T.; Qian, X. Direct Digital Design and Manufacturing from Massive Point-Cloud Data. Comput.-Aided Des. Appl. 2009, 6, 685–699. [Google Scholar] [CrossRef]
- Percoco, G.; Galantucci, L.M. Local-genetic slicing of point clouds for rapid prototyping. Rapid Prototyp. J. 2008, 14, 161–166. [Google Scholar] [CrossRef]
- Chang, M.-C.; Leymarie, F.F.; Kimia, B.B. Surface reconstruction from point clouds by transforming the medial scaffold. Comput. Vis. Image Underst. 2009, 113, 1130–1146. [Google Scholar] [CrossRef]
- Sharif Ullah, A.M.M.; Sato, Y.; Kubo, A.; Tamaki, J.I. Design for Manufacturing of IFS Fractals from the Perspective of Barnsley’s Fern-leaf. Comput.-Aided Des. Appl. 2015, 12, 241–255. [Google Scholar] [CrossRef]
- Ullah, A.M.M.S.; D’Addona, D.M.; Harib, K.H.; Lin, T. Fractals and Additive Manufacturing. Int. J. Autom. Technol. 2016, 10, 222–230. [Google Scholar] [CrossRef]
- Ullah, A.M.M.S.; Omori, R.; Nagara, Y.; Kubo, A.; Tamaki, J. Toward Error-free Manufacturing of Fractals. Procedia CIRP 2013, 12 (Suppl. C), 43–48. [Google Scholar] [CrossRef]
- Sharif Ullah, A.M.M. Design for additive manufacturing of porous structures using stochastic point-cloud: A pragmatic approach. Comput.-Aided Des. Appl. 2018, 15, 138–146. [Google Scholar] [CrossRef]
- Neumüller, M.; Reichinger, A.; Rist, F.; Kern, C. 3D Printing for Cultural Heritage: Preservation, Accessibility, Research and Education. In 3D Research Challenges in Cultural Heritage; Ioannides, M., Quak, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8355, pp. 119–134. [Google Scholar]
- Hess, M.; Robson, S. Re-engineering Watt: A case study and best practice recommendations for 3D colour laser scans and 3D printing in museum artefact documentation. In Lacona IX—Lasers in Conservation; Archetype Publications: London, UK, 2013; pp. 154–162. [Google Scholar]
- Furferi, R.; Governi, L.; Volpe, Y.; Puggelli, L.; Vanni, N.; Carfagni, M. From 2D to 2.5D i.e. from painting to tactile model. Graph. Models 2014, 76, 706–723. [Google Scholar] [CrossRef]
- Cheung, S.C.H. Ainu culture in transition. Futures 2003, 35, 951–959. [Google Scholar] [CrossRef]
- Introduction of Traditional Crafts: Ainushiriki. 2016. Available online: http://www.city.sapporo.jp/shimin/pirka-kotan/jp/kogei/ainu-siriki/ (accessed on 15 January 2018).
Number | Motif | Ainu Name | Description |
---|---|---|---|
1 | | Ayusi | A shape marked with thorn |
2 | | Moreu | A spiral shape |
3 | | Arus-moreu | A spiral shape with small thorns |
4 | | Sikike-nu-moreu | A spiral shape with corners |
5 | | Sik | An eye shape |
6 | | Utasa | A shape that intersects each other |
7 | | Uren-moreu | Two spiral shapes |
8 | | Ski-uren-moreu | Two spiral shapes with an eye shape |
9 | | Moreu-etok | A shape like a spirally plant |
10 | | Punkar | A shape like vine |
11 | | Apapo-piras (u) ke | A shape like flower |
12 | | Apapo-epuy | A shape like flower bud |
13 | | - | A shape like heart type |
14 | | - | A shape like fishing bell |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashi; Ullah, A.S.; Watanabe, M.; Kubo, A. Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation. Appl. Sci. 2018, 8, 656. https://doi.org/10.3390/app8050656
Tashi, Ullah AS, Watanabe M, Kubo A. Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation. Applied Sciences. 2018; 8(5):656. https://doi.org/10.3390/app8050656
Chicago/Turabian StyleTashi, AMM Sharif Ullah, Michiko Watanabe, and Akihiko Kubo. 2018. "Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation" Applied Sciences 8, no. 5: 656. https://doi.org/10.3390/app8050656
APA StyleTashi, Ullah, A. S., Watanabe, M., & Kubo, A. (2018). Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation. Applied Sciences, 8(5), 656. https://doi.org/10.3390/app8050656