Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Photochemical Experiments
2.3. Analytical Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Christen, K. Chickens, manure, and arsenic. Environ. Sci. Technol. 2001, 35, 184A–185A. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Hu, Y.; Cheng, H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS. Microchem. J. 2013, 108, 38–45. [Google Scholar] [CrossRef]
- Mangalgiri, K.P.; Adak, A.; Blaney, L. Organoarsenicals in poultry litter: Detection, fate, and toxicity. Environ. Int. 2015, 75, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Aschbacher, P.W.; Feil, V.J. Fate of [14C]Arsanilic Acid in Pigs and Chickens. J. Agric. Food Chem. 1991, 39, 146–149. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, H.; Lu, X.; Le, X.C. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal. Chim. Acta 2015, 888, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Hu, B.; Liu, Q.; Yang, Z.; Lu, X.; Huang, R.; Li, X.F.; Zuidhof, M.J.; Le, X.C. Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. J. Chromatogr. A 2014, 1370, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Stolz, J.F.; Perera, E.; Kilonzo, B.; Kail, B.; Crable, B.; Fisher, E.; Ranganathan, M.; Wormer, L.; Basu, P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (Roxarsone) and release of inorganic arsenic by clostridium species. Environ. Sci. Technol. 2007, 41, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Shi, Y.; Kong, D.; Lu, J. Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of polynitrated by-products. RSC Adv. 2016, 6, 82040–82048. [Google Scholar] [CrossRef]
- Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R.L. Environmental fate of roxarsone in poultry litter I. Degradation of roxarsone during composting. Environ. Sci. Technol. 2003, 37, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R.L.; Ranville, J.F.; Wildeman, T.R. Photodegradation of roxarsone in poultry litter leachates. Sci. Total Environ. 2003, 302, 237–245. [Google Scholar] [CrossRef]
- Jones, F.T. A broad view of arsenic. Poult. Sci. 2007, 86, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Woolson, E.A. Fate of arsenicals in different environmental substrates. Environ. Health Perspect. 1977, 19, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.D.; Wang, Y.J.; Liu, C.; Qin, W.X.; Zhou, D.M. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. Chemosphere 2014, 107, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Hu, Y.; Cheng, H. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Water Res. 2016, 89, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, J.; Chen, W.; Yu, Y.; Liu, Z.; Li, J.; Wu, F. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection. J. Environ. Sci. (China) 2016, 47, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Czaplicka, M.; Bratek, Ł.; Jaworek, K.; Bonarski, J.; Pawlak, S. Photo-oxidation of p-arsanilic acid in acidic solutions: Kinetics and the identification of by-products and reaction pathways. Chem. Eng. J. 2014, 243, 364–371. [Google Scholar] [CrossRef]
- Czaplicka, M.; Jaworek, K.; Bąk, M. Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: Kinetics and by-products. Environ. Sci. Pollut. Res. 2015, 22, 16927–16935. [Google Scholar] [CrossRef] [PubMed]
- Koda, E.; Miszkowska, A.; Sieczka, A. Levels of Organic Pollution Indicators in Groundwater at the Old Landfill and Waste Management Site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef]
- Wang, A.; Teng, Y.; Hu, X.; Wu, L.; Huang, Y.; Luo, Y.; Christie, P. Photodegradation of diphenylarsinic acid by UV-C light: Implication for its remediation. J. Hazard. Mater. 2016, 308, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Huang, C.P. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 2015, 125, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Jhou, Y.C.; Huang, C.P. Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation. Chem. Eng. J. 2014, 252, 166–172. [Google Scholar] [CrossRef]
- Wang, C.W.; Liang, C. Oxidative degradation of TMAH solution with UV persulfate activation. Chem. Eng. J. 2014, 254, 472–478. [Google Scholar] [CrossRef]
- Pari, S.; Wang, I.A.; Liu, H.Z.; Wong, B.M. Sulfate radical oxidation of aromatic contaminants: A detailed assessment of density functional theory and high-level quantum chemical methods. Environ. Sci. Process. Impacts 2018, 19, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Kang, J.; Wang, Y.; Indrawirawan, S.; Wang, S. Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catal. 2015, 5, 4629–4636. [Google Scholar] [CrossRef]
- Huang, W.; Bianco, A.; Brigante, M.; Mailhot, G. UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents. J. Hazard. Mater. 2018, 347, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Olmez-Hanci, T.; Arslan-Alaton, I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 2013, 224, 10–16. [Google Scholar] [CrossRef]
- Xu, J.; Ding, W.; Wu, F.; Mailhot, G.; Zhou, D.; Hanna, K. Rapid catalytic oxidation of arsenite to arsenate in an iron(III)/sulfite system under visible light. Appl. Catal. B Environ. 2016, 186, 56–61. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Sci. Technol. 2006, 54, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Q.; Gao, N.Y.; Deng, Y.; Yang, Y.Q.; Ma, Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J. 2012, 195–196, 248–253. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, Y.; Huang, W.; Huang, S. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation. J. Environ. Sci. 2012, 24, 821–826. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Xie, X.F.; Huang, W.L.; Huang, S. Degradation of aniline by Fe2+-activated persulfate oxidation at ambient temperature. J. Cent. South Univ. 2013, 20, 1010–1014. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, Q.; Glatt, H.; Platt, K.L.; Goldstein, B.D.; Witz, G. Studies on pathways of ring opening of benzene in a Fenton system. Free Radic. Biol. Med. 1995, 18, 411–419. [Google Scholar] [CrossRef]
- Olmez-Hanci, T.; Arslan-Alaton, I.; Genc, B. Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity. J. Hazard. Mater. 2013, 263, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.M.; Fernández, G.; Klamerth, N.; Maldonado, M.I.; Álvarez, P.M.; Malato, S. Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl. Catal. B Environ. 2010, 95, 228–237. [Google Scholar] [CrossRef]
- Liu, H.Z.; Bruton, T.A.; Li, W.; Buren, J.V.; Prasse, C.; Doyle, F.M.; Sedlak, D.L. Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: Stoichiometric efficiency and transformation products. Environ. Sci. Technol. 2016, 50, 890–898. [Google Scholar] [CrossRef] [PubMed]
[M + H]+ | Structure |
---|---|
122.9 | |
123.7 | |
190.7 | |
278.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Xu, J.; Pozdnyakov, I.P.; Liu, Z. Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process. Appl. Sci. 2018, 8, 615. https://doi.org/10.3390/app8040615
Shen X, Xu J, Pozdnyakov IP, Liu Z. Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process. Applied Sciences. 2018; 8(4):615. https://doi.org/10.3390/app8040615
Chicago/Turabian StyleShen, Xiangyi, Jing Xu, Ivan P. Pozdnyakov, and Zizheng Liu. 2018. "Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process" Applied Sciences 8, no. 4: 615. https://doi.org/10.3390/app8040615
APA StyleShen, X., Xu, J., Pozdnyakov, I. P., & Liu, Z. (2018). Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process. Applied Sciences, 8(4), 615. https://doi.org/10.3390/app8040615