Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application
Abstract
:1. Introduction
2. Related Work
3. Preliminary
3.1. Convolutional Neural Networks (CNN)
3.2. Feature Extractors
3.3. Bounding Box Predictors
3.4. Support Vector Machine (SVM)
4. Methodology
4.1. MobileNet V2 for Feature Extraction
SSD for Bounding Box Prediction
4.2. Training Phase
4.3. SVM for Error Reduction and Spill Size-Based Classification
Algorithm 1: Training the network pseudocode |
|
Algorithm 2: Simulation-optimization heuristic |
|
5. Experiments and Analysis
5.1. Performance Metrics
5.2. Debris Classification
5.3. Liquid Spill Size Classification
5.4. Comparison of Performance of Different Architectures
5.5. Comparison with Existing Schemes
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Park, J.H.; Park, D.R. Dust Detection Method and Apparatus for Cleaning Robot. U.S. Patent 7,920,941, 5 April 2011. [Google Scholar]
- Hess, J.; Beinhofer, M.; Kuhner, D.; Ruchti, P.; Burgard, W. Poisson-driven dirt maps for efficient robot cleaning. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 2245–2250. [Google Scholar]
- Lee, H.; Banerjee, A. Intelligent scheduling and motion control for household vacuum cleaning robot system using simulation based optimization. In Proceedings of the Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 1163–1171. [Google Scholar]
- Andersen, N.A.; Braithwaite, I.D.; Blanke, M.; Sorensen, T. Combining a novel computer vision sensor with a cleaning robot to achieve autonomous pig house cleaning. In Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, Seville, Spain, 15 December 2005; pp. 8331–8336. [Google Scholar]
- Bormann, R.; Fischer, J.; Arbeiter, G.; Weisshardt, F.; Verl, A. A visual dirt detection system for mobile service robots. In Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 1–6. [Google Scholar]
- Bormann, R.; Weisshardt, F.; Arbeiter, G.; Fischer, J. Autonomous dirt detection for cleaning in office environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 1260–1267. [Google Scholar]
- Milinda, H.; Madhusanka, B. Mud and dirt separation method for floor cleaning robot. In Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 29–31 May 2017; pp. 316–320. [Google Scholar]
- Grünauer, A.; Halmetschlager-Funek, G.; Prankl, J.; Vincze, M. The Power of GMMs: Unsupervised Dirt Spot Detection for Industrial Floor Cleaning Robots. In Conference Towards Autonomous Robotic Systems; Springer: Berlin, Germany, 2017; pp. 436–449. [Google Scholar]
- Martínez, D.; Alenya, G.; Torras, C. Planning robot manipulation to clean planar surfaces. Eng. Appl. Artif. Intell. 2015, 39, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Zhihong, C.; Hebin, Z.; Yanbo, W.; Binyan, L.; Yu, L. A vision-based robotic grasping system using deep learning for garbage sorting. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11223–11226. [Google Scholar]
- Bharatharaj, J.; Huang, L.; Mohan, R.; Pathmakumar, T.; Krägeloh, C.; Al-Jumaily, A. Head Pose Detection for a Wearable Parrot-Inspired Robot Based on Deep Learning. Appl. Sci. 2018, 8, 1081. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed]
- Shiry, S.; Center, C.; Browne, M.C. Convolutional Neural Networks for Robot Vision: Numerical Studies and Implementation on a Sewer Robot. Available online: http://staff.itee.uq.edu.au/lovell/aprs/anziis2003/Papers/paper133.pdf (accessed on 31 October 2018).
- Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a Surface Defect Detection Algorithm Based on MobileNet-SSD. Appl. Sci. 2018, 8, 1678. [Google Scholar] [CrossRef]
- Fulton, M.; Hong, J.; Islam, M.J.; Sattar, J. Robotic Detection of Marine Litter Using Deep Visual Detection Models. arXiv, 2018; arXiv:1804.01079. [Google Scholar]
- Tang, C.; Ling, Y.; Yang, X.; Jin, W.; Zheng, C. Multi-View Object Detection Based on Deep Learning. Appl. Sci. 2018, 8, 1423. [Google Scholar] [CrossRef]
- Kim, K.; Hong, S.; Choi, B.; Kim, E. Probabilistic Ship Detection and Classification Using Deep Learning. Appl. Sci. 2018, 8, 936. [Google Scholar] [CrossRef]
- Valdenegro-Toro, M. Submerged marine debris detection with autonomous underwater vehicles. In Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Kollam, India, 18–20 Deccember 2016; pp. 1–7. [Google Scholar]
- Yang, G.T.M.; Thung, G. Classification of Trash for Recyclability Status. CS229 Project Report. 2016. Available online: https://pdfs.semanticscholar.org/c908/11082924011c73fea6252f42b01af9076f28.pdf (accessed on 31 October 2018).
- Tao, Q.-Q.; Zhan, S.; Li, X.-H.; Kurihara, T. Robust face detection using local CNN and SVM based on kernel combination. Neurocomputing 2016, 211, 98–105. [Google Scholar] [CrossRef]
- Tang, P.; Wang, H.; Kwong, S. G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 2017, 225, 188–197. [Google Scholar] [CrossRef]
- Niu, X.X.; Suen, C.Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognit. 2012, 45, 1318–1325. [Google Scholar] [CrossRef]
- Uçar, A.; Demir, Y.; Güzeliş, C. Object recognition and detection with deep learning for autonomous driving applications. Simulation 2017, 93, 759–769. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chen, L.-B.; Chang, W.-J. Development and Experimental Evaluation of Machine-Learning Techniques for an Intelligent Hairy Scalp Detection System. Appl. Sci. 2018, 8, 853. [Google Scholar] [CrossRef]
- Elangovan, K.; Krishnasamy Tamilselvam, Y.; Mohan, R.; Iwase, M.; Takuma, N.; Wood, K. Fault Diagnosis of a Reconfigurable Crawling—Rolling Robot Based on Support Vector Machines. Appl. Sci. 2017, 7, 1025. [Google Scholar] [CrossRef]
- Meirista, E.; Mukhlash, I.; Setiyono, B. Watermelon Plant Classification Based on Shape and Texture Feature Leaf Using Support Vector Machine (Svm). In Proceedings of the International Conference on Research, Implementation and Education of Mathematics and Sciences 2015 (ICRIEMS 2015), Yogyakarta State University, Special Region of Yogyakarta, Indonesia, 17–19 May 2015. [Google Scholar]
- Mittal, G.; Yagnik, K.B.; Garg, M.; Krishnan, N.C. Spotgarbage: Smartphone app to detect garbage using deep learning. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 940–945. [Google Scholar]
- Rad, M.S.; von Kaenel, A.; Droux, A.; Tieche, F.; Ouerhani, N.; Ekenel, H.K.; Thiran, J.-P. A Computer Vision System to Localize and Classify Wastes on the Streets. In International Conference on Computer Vision Systems; Springer: Cham, Switzerland, 2017; pp. 195–204. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation. arXiv, 2018; arXiv:1801.04381. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI 2017, 4, 12. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 91–99. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In European Conference on Computer Vision; Springer: Berlin, Germany, 2016; pp. 21–37. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5-RMSProp, COURSERA: Neural Networks for Machine Learning; Technical Report; University of Toronto: Toronto, ON, USA, 2012. [Google Scholar]
- Aver Visualizer Module. Available online: http://presentation.aver.com/model/355AF (accessed on 31 October 2018).
- LG VR66820VMNC. Available online: https://www.bestdenki.com.sg/robotic-vacuum/lg/vr66820vmnc (accessed on 31 October 2018).
- Samsung POWERbot VR 7000. Available online: https://stacksocial.com/sales/samsung-powerbot-star-wars-limited-edition-stormtrooper-robot-vacuum (accessed on 31 October 2018).
- iRobot—Roomba 675. Available online: https://www.google.com/url?q=https://www.bestbuy.com/site/irobot-roomba-675-app-controlled-self-charging-robot-vacuum-black/6280532.p%3FskuId%3D6280532&ust=1543841220000000&usg=AFQjCNES1JzbsCqD_e8ao-bcNm_-niTyPw&hl=en&source=gmail (accessed on 31 October 2018).
- Neato Robotics—Botvac D5. Available online: https://www.bestbuy.com/site/neato-robotics-botvac-d5-app-controlled-robot-vacuum-black/5559900.p?skuId=5559900 (accessed on 31 October 2018).
- DEEBOT OZMO 930. Available online: https://www.bestbuy.com/site/ecovacs-robotics-deebot-ozmo-930-app-controlled-self-charging-robot-vacuum-mop-black/6215304.p?skuId=6215304 (accessed on 31 October 2018).
- Prabakaran, V.; Elara, M.R.; Pathmakumar, T.; Nansai, S. hTetro: A tetris inspired shape shifting floor cleaning robot. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6105–6112. [Google Scholar]
- Ilyas, M.; Yuyao, S.; Mohan, R.E.; Devarassu, M.; Kalimuthu, M. Design of sTetro: A Modular, Reconfigurable, and Autonomous Staircase Cleaning Robot. J. Sens. 2018, 2018. [Google Scholar] [CrossRef]
Perspective | AP (%) | mAP (%) | |
---|---|---|---|
Solid Spills | Liquid Spills | ||
Top Perspective | 99 | 97.5 | 98.25 |
Robot Perspective | 98.5 | 94.2 | 96.4 |
Manufacturer and Model | Cleaning Path Width (mm) |
---|---|
LG VR66820VMNC [40] | 195 |
Samsung POWERbot VR 7000 [41] | 280 |
iRobot-Roomba 675 [42] | 177 |
Neato Robotics-Botvac D5 [43] | 304 |
DEEBOT OZMO 930 [44] | 359 |
Model | Liquid | Solid | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
Prec | Rec | Prec | Rec | Acc | |||||
Faster RCNN ResNet | 96.9 | 99.4 | 98.1 | 98.6 | 93.0 | 95.7 | 3 | 1 | 97.8 |
Faster RCNN Inception | 91.1 | 97.1 | 94.0 | 93.8 | 82.2 | 87.6 | 7 | 3 | 91.9 |
Proposed Scheme—SSD MobileNet | 94.2 | 99.3 | 96.7 | 98.5 | 87.8 | 92.8 | 4 | 2 | 95.5 |
Model | Time Taken for 60 Images (s) | Average Time per Image (ms) |
---|---|---|
Faster RCNN ResNet | 11.07 | 184 |
Faster RCNN Inception | 8.29 | 138 |
Proposed Scheme—SSD MobileNet | 4.28 | 71 |
Scheme | Framework | Training Dataset Size | Batch Size | Decay | Initial Learning Rate | mAP (%) | Execution Time (s) |
---|---|---|---|---|---|---|---|
Gaurav et al. [27] | AlexNet | 2451 | 100 | 0.0005 | 0.01 | 87.69 | 1.50 |
Yang et al. [19] | CNN (11 layer) | 2400 | 32 | 0.5 | 0.5 | 22.0 | - |
Rad et al. [28] | OverFeat GoogleNet | 18,676 | 16 | - | - | 63.2 | - |
Chen et al. [10] | Fast RCNN | 1999 | 32 | 0.0005 | - | - | 0.22 |
Proposed | MobileNet SSD | 2000 | 32 | 0.9 | 0.002 | 96.4 | 0.071 |
Scheme | Framework | Training Dataset Size | Epochs | mAP (%) | Miss Rate (%) | False Rate (%) | Execution Time (s) | Application |
---|---|---|---|---|---|---|---|---|
Li et al. [14] | MobileNet SSD | 400 | 10,000 | 95 | - | 2 | 0.12 | Material Surface Defect Detection |
Saeed et al. [13] | CNN (3 layer) | 160 video frames | 1000 | - | - | - | - | Pipe Joint Detection |
Fulton et al. [9] | YOLO v2 | 5720 | - | 47.9 | - | - | 0.11 | Marine Debris Detection |
tiny YOLO | - | 31.6 | - | - | 0.52 | |||
Faster RCNN Inception v2 | - | 81.0 | - | - | 0.97 | |||
SSD MobileNet | - | 67.4 | - | - | 3.19 | |||
Proposed | MobileNet SSD | 2000 | 10,000 | 96.4 | 4 | 2 | 0.071 | Debris Detection and Classification |
Scheme | Algorithm | Accuracy |
---|---|---|
Bormann et al. [5] | Spectral residual filter | 75.45 |
Milinda et al. [7] | Spectral residual filter + Maximally Stable Extremal Regions | 80.12 |
Mittal et al. [27] | HOG + Gabor + Color | 80.32 |
Yang et al. [19] | SVM | 63 |
Proposed | MobileNet SSD | 95.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalingam, B.; Lakshmanan, A.K.; Ilyas, M.; Le, A.V.; Elara, M.R. Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application. Appl. Sci. 2018, 8, 2649. https://doi.org/10.3390/app8122649
Ramalingam B, Lakshmanan AK, Ilyas M, Le AV, Elara MR. Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application. Applied Sciences. 2018; 8(12):2649. https://doi.org/10.3390/app8122649
Chicago/Turabian StyleRamalingam, Balakrishnan, Anirudh Krishna Lakshmanan, Muhammad Ilyas, Anh Vu Le, and Mohan Rajesh Elara. 2018. "Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application" Applied Sciences 8, no. 12: 2649. https://doi.org/10.3390/app8122649
APA StyleRamalingam, B., Lakshmanan, A. K., Ilyas, M., Le, A. V., & Elara, M. R. (2018). Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application. Applied Sciences, 8(12), 2649. https://doi.org/10.3390/app8122649