Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Wolframite Characterization
2.2. Preperation of Wolframite-Coated Cathode and MFCs Start-Up
2.3. Electricity and Electrochemical Measurements
3. Results and Discussion
3.1. Morphological and Structural Characterization of Wolframite
3.2. Band Gap and Photocurrents
3.3. MFC Performance Analysis
3.4. Potential Study of Wolframite-Coated Cathode
3.5. Mechanisms of the Enhanced Performance of the Wolframite-Cathode MFC
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, W.W.; Yu, H.Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef]
- Logan, B.E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 2011, 4, 4896–4906. [Google Scholar] [CrossRef]
- Oh, S.; Min, B.; Logan, B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900–4904. [Google Scholar] [CrossRef]
- Feng, L.; Yan, Y.; Chen, Y.; Wang, L. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ. Sci. 2011, 4, 1892–1899. [Google Scholar] [CrossRef]
- Kim, J.R.; Kim, J.Y.; Han, S.B.; Park, K.W.; Saratale, G.D.; Oh, S.E. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells. Bioresour. Technol. 2011, 102, 342–347. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Wang, C.; Hou, S.-X.; Yang, N. Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-Doped Graphene Cathode. Environ. Sci. Technol. 2013, 47, 13889–13895. [Google Scholar] [CrossRef]
- Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z.J.; Liu, Z.; Zhang, W. Synthesis of a conjugated porous Co(II) porphyrinylene–ethynylene framework through alkyne metathesis and its catalytic activity study. J. Mater. Chem. A 2015, 3, 4954–4959. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B.E. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells. ACS Appl. Mater. Interfaces 2013, 5, 7862–7866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, L.; Zhang, B.; Tian, C.; Ye, L.; Shi, C.; Cheng, M.; Feng, C. Enhanced microbial reduction of vanadium(V) in groundwater with bioelectricity from microbial fuel cells. J. Power Source 2015, 287, 43–49. [Google Scholar] [CrossRef]
- Clauwaert, P.; Van der Ha, D.; Boon, N.; Verbeken, K.; Verhaege, M.; Rabaey, K.; Verstraete, W. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 2007, 41, 7564–7569. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.A.; Achenbach, L.A.; Coates, J.D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 2006, 4, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Kharkwal, S.; Ng, H.Y.; Li, S. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosens. Bioelectron. 2011, 26, 4728–4732. [Google Scholar] [CrossRef] [PubMed]
- Roche, I.; Katuri, K.; Scott, K. A microbial fuel cell using manganese oxide oxygen reduction catalysts. J. Appl. Electrochem. 2010, 40, 13–21. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Ahadzadeh, I. A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode. J. Power Sources 2012, 220, 292–297. [Google Scholar] [CrossRef]
- Morris, J.M.; Jin, S.; Wang, J.; Zhu, C.; Urynowicz, M.A. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem. Commun. 2007, 9, 1730–1734. [Google Scholar] [CrossRef]
- Ren, G.; Ding, H.; Li, Y.; Lu, A. Natural Hematite as a Low-Cost and Earth-Abundant Cathode Material for Performance Improvement of Microbial Fuel Cells. Catalysts 2016, 6, 157. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, W.; Liu, C.; Tao, J.; Ding, H. Enhanced Performance for Treatment of Cr(VI)-Containing Wastewater by Microbial Fuel Cells with Natural Pyrrhotite-Coated Cathode. Water 2017, 9, 979. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Jin, S.; Ding, H.; Zeng, C.; Wang, X.; Wang, C. Microbial fuel cell equipped with a photocatalytic rutile-coated cathode. Energy Fuels 2009, 24, 1184–1190. [Google Scholar] [CrossRef]
- Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Yan, Y.; Sun, M.; Wang, X.; Wu, X.; Li, Y.; Lu, A.; Ding, H. Considerable Bacterial Community Structure Coupling with Extracellular Electron Transfer at Karst Area Stone in Yunnan, China. Geomicrobiol. J. 2018, 35, 424–431. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Jin, S.; Wang, X.; Wu, X.; Zeng, C.; Li, Y.; Ding, H.; Hao, R.; Lv, M.; et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat. Commun. 2012, 3, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Sun, Y.; Sun, M.; Li, Y.; Lu, A.; Ding, H. Visible Light Enhanced Extracellular Electron Transfer between a Hematite Photoanode and Pseudomonas aeruginosa. Minerals 2017, 7, 230. [Google Scholar] [CrossRef]
- Qian, F.; Wang, G.; Li, Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett. 2010, 10, 4686–4691. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Sun, Y.; Ding, Y.; Lu, A.; Li, Y.; Wang, C.; Ding, H. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite. Bioelectrochemistry 2018, 123, 233–240. [Google Scholar] [CrossRef] [PubMed]
- He, H.Y.; Huang, J.F.; Cao, L.Y.; Wu, J.P. Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH. Desalination 2010, 252, 66–70. [Google Scholar] [CrossRef]
- Vosoughifar, M. Preparation, characterization, and morphological control of MnWO4 nanoparticles through novel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 2017, 28, 2135–2140. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Z. FeWO4 nanorods with excellent UV–Visible light photocatalysis. Prog. Nat. Sci. Mater. Int. 2017, 27, 556–560. [Google Scholar] [CrossRef]
- Choi, W.S.; Taniguchi, K.; Moon, S.J.; Seo, S.S.; Arima, T.; Hoang, H.; Yang, I.S.; Noh, T.W.; Lee, Y.S. Electronic structure and anomalous band-edge absorption feature in multiferroic MnWO4: An optical spectroscopic study. Phys. Rev. B 2010, 81, 205111. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Y.; Liu, Z.; Dunnill, C.; Gregory, D.H.; Zhu, Y. Nanostructural evolution: From one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers. Chem. Mater. 2008, 20, 5657–5665. [Google Scholar] [CrossRef]
- Liu, K.; Li, J.; Yan, X.; Shi, W. Synthesis of Direct Z-Scheme MnWO4/g-C3N4 Photocatalyst with Enhanced Visible Light Photocatalytic Activity. Nano 2017, 12, 1750129. [Google Scholar] [CrossRef]
- Ghasemi, M.; Daud, W.R.W.; Rahimnejad, M.; Rezayi, M.; Fatemi, A.; Jafari, Y.; Somalu, M.R.; Manzour, A. Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int. J. Hydrogen Energy 2013, 38, 9533–9540. [Google Scholar] [CrossRef]
- Dong, H.; Yu, H.; Wang, X.; Zhou, Q.; Feng, J. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Res. 2012, 46, 5777–5787. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Yadav, A.; Verma, N. Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem. Eng. J. 2017, 307, 729–738. [Google Scholar] [CrossRef]
Cathode Condition | Open Circuit Voltage (mV) | Maximum Output Power (mW·m−2) | System Resistance (Ω) |
---|---|---|---|
Graphite Dark | 489.2 | 41.47 | 1197.5 |
Graphite Light | 496.3 | 57.74 | 1134.7 |
Wolframite Dark | 520.2 | 95.51 | 754.1 |
Wolframite Light | 575.3 | 135.57 | 583.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Lu, A.; Chu, H.; Wu, H.; Ding, H. Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells. Appl. Sci. 2018, 8, 2504. https://doi.org/10.3390/app8122504
Shi J, Lu A, Chu H, Wu H, Ding H. Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells. Applied Sciences. 2018; 8(12):2504. https://doi.org/10.3390/app8122504
Chicago/Turabian StyleShi, Junxian, Anhuai Lu, Haibin Chu, Hongyu Wu, and Hongrui Ding. 2018. "Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells" Applied Sciences 8, no. 12: 2504. https://doi.org/10.3390/app8122504
APA StyleShi, J., Lu, A., Chu, H., Wu, H., & Ding, H. (2018). Natural Wolframite Used as Cathode Photocatalyst for Improving the Performance of Microbial Fuel Cells. Applied Sciences, 8(12), 2504. https://doi.org/10.3390/app8122504