An Experimental Investigation into Combustion Fitting in a Direct Injection Marine Diesel Engine
Abstract
:1. Introduction
2. Experiments
2.1. Engine Test Bed Installation
2.2. Measurements Procedures
2.3. Measurements samples Preparations
3. Methodology
3.1. In-Cylidner Measured Pressure Signals Processing
3.2. Seiliger Process and Seliger Process Parameters Obtain
- 1–2:
- polytropic compression;
- 2–3:
- isochoric combustion;
- 3–4:
- isobaric combustion and expansion;
- 4–5:
- isothermal combustion and expansion;
- 5–6:
- polytropic expansion indicating a net heat loss, used when there is no combustion in this stage (basic);
- 5–6′:
- polytropic expansion indicating a net heat input caused by late combustion during expansion (advanced).
3.3. Combustion Fitting Approach
3.4. Implementation in the Combustion Fitting Based on Seiliger Process
4. Results and Analysis
4.1. The Process Pressure Signals of Four Cylinders
4.2. The Combustion Fit Results of Engine Nominal Operating Point
4.2.1. Four-Cylinder Averaged Pressure Signals
4.2.2. Each Cylinder Pressure Signals
4.3. The Combustion Fit Results of Engine Running with Generator Conditions
5. Conclusions
- (1)
- The Seiliger process provides an efficient way on parameterizing engine combustion process in particular for the engine in system integration simulation. The advanced Seiliger process model takes into account the engine late combustion and extends the basic Seiliger process application.
- (2)
- According to the fitting results on comparison of in-cylinder pressure measurements and Seiliger parameters mathematics solutions, it is verified that Newton-Raphson method is an efficient way to solve multi-variable differential equations, especially for engineering applications.
- (3)
- There is some cylinder performance discrepancy in multi-cylinder diesel engine, where after averaging the overall cylinders, the single cylinder ambiguous data could be eliminated. Therefore, the averaged pressure signals are preferred to be used in the combustion fitting process.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BDC | bottom dead center |
DFE | degrees of freedom in the error |
EGR | exhaust gas recirculation |
EO | exhaust valve open angle |
HCCI | homogeneous charge compression ignition |
IC | intake valve close angle |
NO | nitric oxide |
PDE | partial differential equation |
RMSE | root mean squared error |
SOI | start of injection |
SSE | sum of squares due to error |
Vect | vector quantity |
Symbols | |
f | frequency |
a | Seiliger parameter |
b | Seiliger parameter |
c | Seiliger parameter |
func | functions |
n | speed |
ncomp | compression exponent |
nexp | expansion exponent |
number of poles | |
Pe | effective power |
PEO | pressure of exhaust valve open angle |
Pi | indication pressure |
pmax | maximum pressure |
qin | inlet quantity of heat |
rc | compression ratio |
Tmax | maximum temperature |
wi | indicator work |
References
- Kumar, S.; Kumar Chauhan, M. Varun Numerical modeling of compression ignition engine: A review. Renew. Sustain. Energy Rev. 2013, 19, 517–530. [Google Scholar] [CrossRef]
- Carbot-Rojas, D.A.; Escobar-Jiménez, R.F.; Gómez-Aguilar, J.F.; Téllez-Anguiano, A.C. A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines. Renew. Sustain. Energy Rev. 2017, 73, 1070–1085. [Google Scholar] [CrossRef]
- Nahim, H.M.; Younes, R.; Shraim, H.; Ouladsine, M. Oriented review to potential simulator for faults modeling in diesel engine. J. Mar. Sci. Technol. Jpn. 2016, 21, 533–551. [Google Scholar] [CrossRef]
- Huang, M.; Gowdagiri, S.; Cesari, X.M.; Oehlschlaeger, M.A. Diesel engine CFD simulations: Influence of fuel variability on ignition delay. Fuel 2016, 181, 170–177. [Google Scholar] [CrossRef]
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Boronat, V. Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Convers. Manag. 2017, 136, 142–151. [Google Scholar] [CrossRef]
- Oefelein, J.C.; Drozda, T.G.; Sankaran, V. Large eddy simulation of turbulence-chemistry interactions in reacting flows. J. Phys. Conf. Ser. 2006, 46, 16. [Google Scholar] [CrossRef]
- Kahila, H.; Wehrfritz, A.; Kaario, O.; Vuorinen, V. Large-eddy simulation of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture. Combust. Flame 2019, 199, 131–151. [Google Scholar] [CrossRef]
- Knudsen, E.; Doran, E.M.; Mittal, V.; Meng, J.; Spurlock, W. Compressible Eulerian needle-to-target large eddy simulations of a diesel fuel injector. Proc. Combust. Inst. 2017, 36, 2459–2466. [Google Scholar] [CrossRef]
- An, Y.; Jaasim, M.; Raman, V.; Im, H.G.; Johansson, B. In-Cylinder Combustion and Soot Evolution in the Transition from Conventional Compression Ignition (CI) Mode to Partially Premixed Combustion (PPC) Mode. Energy Fuel 2018, 32, 2306–2320. [Google Scholar] [CrossRef]
- Tay, K.L.; Yang, W.; Mohan, B.; Zhou, D.; Yu, W.; Zhao, F. Development of a reduced kerosene–diesel reaction mechanism with embedded soot chemistry for diesel engines. Fuel 2016, 181, 926–934. [Google Scholar] [CrossRef]
- Petranović, Z.; Sjerić, M.; Taritaš, I.; Vujanović, M.; Kozarac, D. Study of advanced engine operating strategies on a turbocharged diesel engine by using coupled numerical approaches. Energy Convers. Manag. 2018, 171, 1–11. [Google Scholar] [CrossRef]
- Yu, Y.; Song, G. Numerical Study of Diesel Lift-Off Flame and Soot Formation under Low-Temperature Combustion. Energy Fuel 2015, 30, 2035–2042. [Google Scholar] [CrossRef]
- Cheng, X.; Ng, H.K.; Gan, S.; Ho, J.H.; Pang, K.M. Numerical Analysis of the Effects of Biodiesel Unsaturation Levels on Combustion and Emission Characteristics under Conventional and Diluted Air Conditions. Energy Fuel 2018, 32, 8392–8410. [Google Scholar] [CrossRef]
- Lackmann, T.; Kerstein, A.R.; Oevermann, M. A representative linear eddy model for simulating spray combustion in engines (RILEM). Combust. Flame 2018, 193, 1–15. [Google Scholar] [CrossRef]
- Dahms, R.N.; Manin, J.; Pickett, L.M.; Oefelein, J.C. Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proc. Combust. Inst. 2013, 34, 1667–1675. [Google Scholar] [CrossRef]
- Cung, K.; Moiz, A.; Johnson, J.; Lee, S.; Kweon, C.; Montanaro, A. Spray–combustion interaction mechanism of multiple-injection under diesel engine conditions. Proc. Combust. Inst. 2015, 35, 3061–3068. [Google Scholar] [CrossRef] [Green Version]
- Hiroyasu, H.; Kadota, T.; Arai, M. Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions: Part 1 Combustion Modeling. Bull. JSME 1983, 26, 569–575. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control. Energies 2018, 11, 936. [Google Scholar] [CrossRef]
- Fang, J.; Wu, X.; Duan, H.; Li, C.; Gao, Z. Effects of Electric Fields on the Combustion Characteristics of Lean Burn Methane-Air Mixtures. Energies 2015, 8, 2587–2605. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Song, E.; Ding, Y. A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines. Energies 2018, 11, 561. [Google Scholar] [CrossRef]
- Zegers, R.P.C.; Luijten, C.C.M.; Dam, N.J.; de Goey, L.P.H. Pre- and post-injection flow characterization in a heavy-duty diesel engine using high-speed PIV. Exp. Fluids 2012, 53, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Rabault, J.; Vernet, J.A.; Lindgren, B.; Alfredsson, P.H. A study using PIV of the intake flow in a diesel engine cylinder. Int. J. Heat Fluid Flow 2016, 62, 56–67. [Google Scholar] [CrossRef]
- Leermakers, C.A.J.; Musculus, M.P.B. In-cylinder soot precursor growth in a low-temperature combustion diesel engine: Laser-induced fluorescence of polycyclic aromatic hydrocarbons. Proc. Combust. Inst. 2015, 35, 3079–3086. [Google Scholar] [CrossRef] [Green Version]
- Payri, R.; Gimeno, J.; Martí-Aldaraví, P.; Giraldo, J.S. Methodology for Phase Doppler Anemometry Measurements on a Multi-Hole Diesel Injector. Exp. Tech. 2017, 41, 95–102. [Google Scholar] [CrossRef]
- Yin, J.; Su, T.; Guan, Z.; Chu, Q.; Meng, C.; Jia, L.; Wang, J.; Zhang, Y. Modeling and Validation of a Diesel Engine with Turbocharger for Hardware-in-the-Loop Applications. Energies 2017, 10, 685. [Google Scholar] [CrossRef]
- Sui, C.; Song, E.; Stapersma, D.; Ding, Y. Mean value modelling of diesel engine combustion based on parameterized finite stage cylinder process. Ocean Eng. 2017, 136, 218–232. [Google Scholar] [CrossRef]
- Baldi, F.; Theotokatos, G.; Andersson, K. Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation. Appl. Energy 2015, 154, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Theotokatos, G.; Guan, C.; Chen, H.; Lazakis, I. Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings. Energy 2018, 143, 533–545. [Google Scholar] [CrossRef]
- Shamekhi, A.; Shamekhi, A.H. A new approach in improvement of mean value models for spark ignition engines using neural networks. Expert Syst. Appl. 2015, 42, 5192–5218. [Google Scholar] [CrossRef]
- Nikzadfar, K.; Shamekhi, A.H. An extended mean value model (EMVM) for control-oriented modeling of diesel engines transient performance and emissions. Fuel 2015, 154, 275–292. [Google Scholar] [CrossRef]
- Geertsmaab, R.D.; Negenborna, R.R.; Visserab, K.; Loonstijna, M.A.; Hopman, J.J. Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification. Appl. Energy 2017, 206, 1609–1631. [Google Scholar] [CrossRef]
- Ding, Y.; Stapersma, D.; Knoll, H.; Grimmelius, H.T. A new method to smooth the in-cylinder pressure signal for combustion analysis in diesel engines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 225, 309–318. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, S.; Huang, S.; Huang, R.; Tang, J.; Du, T.; Cheng, X.; Chen, J. Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray. Appl. Energy 2018, 226, 397–407. [Google Scholar] [CrossRef]
- Pagán Rubio, J.A.; Vera-García, F.; Hernandez Grau, J.; Muñoz Cámara, J.; Albaladejo Hernandez, D. Marine diesel engine failure simulator based on thermodynamic model. Appl. Therm. Eng. 2018, 144, 982–995. [Google Scholar] [CrossRef]
- Ding, Y.; Stapersma, D.; Grimmelius, H. Using Parametrized Finite Combustion Stage Models to Characterize Combustion in Diesel Engines. Energy Fuel 2012, 26, 7099–7106. [Google Scholar] [CrossRef]
- Uchida, N.; Okamoto, T.; Watanabe, H. A new concept of actively controlled rate of diesel combustion for improving brake thermal efficiency of diesel engines: Part 1—Verification of the concept. Int. J. Eng. Res. 2017, 19, 474–487. [Google Scholar] [CrossRef]
- Hartmann, S. A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput. Mech. 2005, 36, 100–116. [Google Scholar] [CrossRef]
- Smith, M.R.; Lin, Y. Analysis of the convergence properties for a non-linear implicit Equilibrium Flux Method using Quasi Newton–Raphson and BiCGStab techniques. Comput. Math. Appl. 2016, 72, 2008–2019. [Google Scholar] [CrossRef]
- Gościniak, I.; Gdawiec, K. Control of Dynamics of the Modified Newton-Raphson. Commun. Nonlinear Sci. 2018, 67, 76–99. [Google Scholar] [CrossRef]
- Pakdemirli, M.; Boyacı, H. Generation of root finding algorithms via perturbation theory and some formulas. Appl. Math. Comput. 2007, 184, 783–788. [Google Scholar] [CrossRef]
- Abbasbandy, S. Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2003, 145, 887–893. [Google Scholar] [CrossRef]
- Ding, Y. Characterising Combustion in Diesel Engines: Using Parameterised Finite Stage Cylinder Process Models. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
Parameter | |
---|---|
Model | MAN4L 20/27 |
Cylinder Number | 4 |
Bore | 0.20 m |
Stroke | 0.27 m |
Connection Rod Length | 0.52 m |
Nominal Engine Speed | 1000 rpm |
Maximum Effective Power | 340 kW |
Compression Ratio | 13.4 [-] |
Fuel Injection | Plunger pump Direct injection |
Fuel Injection Pressure | 80 MPa |
SOI | 4° before TDC |
IC | 20° after BDC |
EO | 300° after BDC |
Seiliger Stage | Seiliger Definition | Parameter Definition | Seiliger Parameters |
---|---|---|---|
1–2 | rc, ncomp | ||
2–3 | a | ||
3–4 | b | ||
4–5 | c | ||
5–6 (5–6′) | rc, nexp |
Fit Indicator | SSE | R-Square | Adjusted R-Square | DFE | RMSE |
---|---|---|---|---|---|
0.4306 | 0.9921 | 0.9921 | 1025 | 0.0205 | |
Engine parameters | Pmax (bar) | Tmax (K) | PEO (bar) | TEO (K) | Pi (kW) |
Raw data | 95.87 | 1569.70 | 8.95 | 1159.98 | 83.59 |
Smoothed | 93.19 | 1513.58 | 8.61 | 1119.60 | 83.32 |
Seiliger Parameters (Variables) | Engine Performance (Equivalence Criteria) | |
---|---|---|
basic Seiliger process | a, b, c, nexp | pmax, Tmax, qin, wi |
advanced Seiliger process | a, b, c, nexp | pmax, Tmax, qin, wi |
Basic Seiliger Process | Advanced Seiliger Process | ||||
---|---|---|---|---|---|
Constant | ncomp | 1.36 | |||
rc | 13.107 | ||||
∆EO | 0 | ||||
Seiliger Variables | Value | Heat Input Ratio | Value | Heat Input Ratio | |
a | 1.331 | 22.11% | 1.331 | 22.11% | |
b | 1.339 | 41.87% | 1.338 | 41.85% | |
c | 2.428 | 36.02% | 1.505 | 16.53% | |
nexp | 1.367 | 0 | 1.197 | 19.51% |
Seiliger Variables | Cylinder 1 | Cylinder 2 | Cylinder 3 | Cylinder 4 | Cylinder (average) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Heat Input Ratio | Value | Heat Input Ratio | Value | Heat Input Ratio | Value | Heat Input Ratio | Value | Heat Input Ratio | |
a | 1.311 | 20.83% | 1.349 | 23.05% | 1.329 | 21.04% | 1.338 | 22.44% | 1.331 | 22.11% |
b | 1.344 | 41.92% | 1.330 | 40.92% | 1.347 | 41.07% | 1.330 | 40.68% | 1.338 | 41.85% |
c | 1.375 | 12.77% | 1.516 | 16.74% | 1.127 | 4.64% | 1.427 | 14.24% | 1.505 | 16.53% |
nexp | 1.180 | 24.49% | 1.198 | 19.29% | 1.151 | 33.25% | 1.185 | 22.65% | 1.197 | 19.51% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Sui, C.; Li, J. An Experimental Investigation into Combustion Fitting in a Direct Injection Marine Diesel Engine. Appl. Sci. 2018, 8, 2489. https://doi.org/10.3390/app8122489
Ding Y, Sui C, Li J. An Experimental Investigation into Combustion Fitting in a Direct Injection Marine Diesel Engine. Applied Sciences. 2018; 8(12):2489. https://doi.org/10.3390/app8122489
Chicago/Turabian StyleDing, Yu, Congbiao Sui, and Jincheng Li. 2018. "An Experimental Investigation into Combustion Fitting in a Direct Injection Marine Diesel Engine" Applied Sciences 8, no. 12: 2489. https://doi.org/10.3390/app8122489
APA StyleDing, Y., Sui, C., & Li, J. (2018). An Experimental Investigation into Combustion Fitting in a Direct Injection Marine Diesel Engine. Applied Sciences, 8(12), 2489. https://doi.org/10.3390/app8122489