# Disturbance-Rejection Control for the Hover and Transition Modes of a Negative-Buoyancy Quad Tilt-Rotor Autonomous Underwater Vehicle

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

#### 2.1. Mechanical Structure and Three Working Modes

#### 2.2. System Model

#### 2.3. Problem Formulation

## 3. Disturbance-Rejection Controller Design Based On Linear Extended State Observer (LESO)

#### 3.1. LESO Design

#### 3.2. Controller Design

#### 3.3. Stability Analysis

**Theorem**

**1.**

**Proof.**

## 4. Experiment Results and Discussion

#### 4.1. Testbed

#### 4.2. Attitude Stabilization of Hover Mode

#### 4.3. Attitude Tracking of Hover Mode

#### 4.4. Attitude Stabilization of Transition Mode

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Fossen, T. Guidance and Control of Ocean Vehicles; John Willey & Sons: New York, NY, USA, 1994. [Google Scholar]
- Brown, C.L. Deep sea mining and robotics: Assessing legal, societal and ethical implications. In Proceedings of the 2017 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Austin, TX, USA, 8–10 March 2017; pp. 1–2. [Google Scholar]
- Hussain, N.A.A.; Arshad, M.R.; Mohd-Mokhtar, R. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng.
**2011**, 38, 1782–1791. [Google Scholar] [CrossRef] - Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV Navigation and Localization: A Review. IEEE J. Ocean. Eng.
**2014**, 39, 131–149. [Google Scholar] [CrossRef] - Palomeras, N.; Vallicrosa, G.; Mallios, A.; Bosch, J.; Vidal, E.; Hurtos, N.; Carreras, M.; Ridao, P. AUV homing and docking for remote operations. Ocean Eng.
**2018**, 154, 106–120. [Google Scholar] [CrossRef] - Hui, Y.; Tong, G.; Jia-wang, L.; Qiang, W. Prediction of mode and static stability of negative buoyancy vehicle. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 1903–1909. [Google Scholar]
- Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol.
**2014**, 352, 451–468. [Google Scholar] [CrossRef][Green Version] - Astolfi, A.; Karagiannis, D.; Ortega, R. Nonlinear and Adaptive Control with Applications; Springer: London, UK, 2008. [Google Scholar]
- Wang, T.; Wu, C.; Wang, J.; Ge, T. Modeling and Control of Negative-Buoyancy Tri-Tilt-Rotor Autonomous Underwater Vehicles Based on Immersion and Invariance Methodology. Appl. Sci.
**2018**, 8, 1150. [Google Scholar] [CrossRef] - Sarkar, N.; Podder, T.K.; Antonelli, G. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans. Robot. Autom.
**2002**, 18, 223–233. [Google Scholar] [CrossRef] - Ji, S.W.; Bui, V.P.; Balachandran, B.; Kim, Y.B. Robust control allocation design for marine vessel. Ocean Eng.
**2013**, 63, 105–111. [Google Scholar] [CrossRef] - Benkhoud, K.; Bouallègue, S. Model Predictive Control design for a convertible Quad Tilt-Wing UAV. In Proceedings of the 2016 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 16–18 December 2016; pp. 1–6. [Google Scholar]
- Li, X.; Zhao, M.; Ge, T. A Nonlinear Observer for Remotely Operated Vehicles with Cable Effect in Ocean Currents. Appl. Sci.
**2018**, 8, 867. [Google Scholar] [CrossRef] - Guo-Qing, X.; Ying, Y.; Wei-Guang, Z. Path-Following in 3D for Underactuated AUV in the Presence of Ocean Current. In Proceedings of the 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation, Hong Kong, China, 16–17 January 2013; pp. 788–791. [Google Scholar]
- Hosseini, M.; Seyedtabaii, S. Robust ROV path following considering disturbance and measurement error using data fusion. Appl. Ocean Res.
**2016**, 54, 67–72. [Google Scholar] [CrossRef] - Xiang, X.; Yu, C.; Zhang, Q. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res.
**2017**, 84, 165–177. [Google Scholar] [CrossRef] - Pan, H.; Xin, M. Depth control of autonomous underwater vehicles using indirect robust control method. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 6216–6221. [Google Scholar]
- Healey, A.J.; Lienard, D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng.
**1993**, 18, 327–339. [Google Scholar] [CrossRef][Green Version] - Cui, R.; Yang, C.; Li, Y.; Sharma, S. Adaptive Neural Network Control of AUVs with Control Input Nonlinearities Using Reinforcement Learning. IEEE Trans. Syst. Man Cybern. Syst.
**2017**, 47, 1019–1029. [Google Scholar] [CrossRef] - Harun, N.; Zain, Z.M.; Noh, M.M. PSO approach for a PID back-stepping control method in stabilizing an underactuated X4-AUV. In Proceedings of the 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS), Kuala Lumpur, Malaysia, 18–20 December 2017; pp. 1–6. [Google Scholar]
- Shen, C.; Shi, Y.; Buckham, B. Trajectory Tracking Control of an Autonomous Underwater Vehicle Using Lyapunov-Based Model Predictive Control. IEEE Trans. Ind. Electron.
**2018**, 65, 5796–5805. [Google Scholar] [CrossRef] - Wen-Hua, C.; Ballance, D.J.; Gawthrop, P.J.; Reilly, J.O. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron.
**2000**, 47, 932–938. [Google Scholar] [CrossRef][Green Version] - Huang, Y.; Xue, W.; Zhiqiang, G.; Sira-Ramirez, H.; Wu, D.; Sun, M. Active disturbance rejection control: Methodology, practice and analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 1–5. [Google Scholar]
- Liu, C.; McAree, O.; Chen, W.H. Path following for small UAVs in the presence of wind disturbance. In Proceedings of the 2012 UKACC International Conference on Control (CONTROL), Cardiff, UK, 3–5 September 2012; pp. 613–618. [Google Scholar]
- Qin, W.; Liu, Z.; Chen, Z. Formation control for nonlinear multi-agent systems with linear extended state observer. IEEE/CAA J. Autom. Sin.
**2014**, 1, 171–179. [Google Scholar] [CrossRef] - Tatsumi, J.; Gao, Z. On the enhanced ADRC design with a low observer bandwidth. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 297–302. [Google Scholar]
- Liu, P.; Sun, Z.; Qiao, Y.; Sun, W. Attitude control and moment management of space station based on LESO. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 918–922. [Google Scholar]
- Zhou, Y.; Li, R.; Zhao, D.; Wu, Q. Ship heading control using LESO with wave disturbance. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 2081–2086. [Google Scholar]
- Bao, Y.; Wang, L.Y.; Wang, C.; Jiang, J.; Jiang, C.; Duan, C. Adaptive Feedforward Compensation for Voltage Source Disturbance Rejection in DC–DC Converters. IEEE Trans. Control Syst. Technol.
**2018**, 26, 344–351. [Google Scholar] [CrossRef] - Kempf, C.J.; Kobayashi, S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol.
**1999**, 7, 513–526. [Google Scholar] [CrossRef] - Xiang, X.; Lapierre, L.; Jouvencel, B. Smooth transition of AUV motion control: From fully-actuated to under-actuated configuration. Robot. Autom. Syst.
**2015**, 67, 14–22. [Google Scholar] [CrossRef][Green Version] - Xing, G.; Shabbir, A. Alternate forms of relative attitude kinematics and dynamics equations. In 2001 Flight Mechanics Symposium; Lynch, J.P., Ed.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2001; pp. 83–97. [Google Scholar]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]

**Figure 1.**Mechanical configuration and co-ordinates of the negative-buoyancy quad-tilt-rotor autonomous underwater vehicle (NQTAUV).

Parameters | Value | Unit (SI) |
---|---|---|

${l}_{1}$ | 0.11 | m |

${l}_{2}$ | 0.09 | m |

m | 1.5 | kg |

B | 3.15 | N |

${I}_{xx}$ | 0.006 | kg/m${}^{2}$ |

${I}_{yy}$ | 0.006 | kg/m${}^{2}$ |

${I}_{zz}$ | 0.012 | kg/m${}^{2}$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, T.; Wang, J.; Wu, C.; Zhao, M.; Ge, T.
Disturbance-Rejection Control for the Hover and Transition Modes of a Negative-Buoyancy Quad Tilt-Rotor Autonomous Underwater Vehicle. *Appl. Sci.* **2018**, *8*, 2459.
https://doi.org/10.3390/app8122459

**AMA Style**

Wang T, Wang J, Wu C, Zhao M, Ge T.
Disturbance-Rejection Control for the Hover and Transition Modes of a Negative-Buoyancy Quad Tilt-Rotor Autonomous Underwater Vehicle. *Applied Sciences*. 2018; 8(12):2459.
https://doi.org/10.3390/app8122459

**Chicago/Turabian Style**

Wang, Tao, Jianqin Wang, Chao Wu, Min Zhao, and Tong Ge.
2018. "Disturbance-Rejection Control for the Hover and Transition Modes of a Negative-Buoyancy Quad Tilt-Rotor Autonomous Underwater Vehicle" *Applied Sciences* 8, no. 12: 2459.
https://doi.org/10.3390/app8122459