Dynamics of Fe, Mn, and Al Liberated from Contaminated Soil by Low-Molecular-Weight Organic Acids and Their Effects on the Release of Soil-Borne Trace Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Contaminated Soil Used for the Experiment
2.2. Experimental Design
2.3. Analytical Methods
2.4. QA/QC and Statistical Analysis
3. Results
3.1. Temporal Variation in pH, Eh, and EC during the Period of the Experiment
3.2. Temporal Variation in Solution-borne Al, Fe, and Mn During the Period of the Experiment
3.3. Relationships Among Solution-Borne Al, Fe, and Mn at Different Sampling Times
3.4. Relationship between Fe, Mn, or Al and Various Potentially Toxic Elements in the Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, G.; Bigham, J.M.; Faure, G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569–581. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Violante, A.; Ricciardella, M.; Pigna, M. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands. Water Air Soil Pollut. 2003, 145, 289–306. [Google Scholar] [CrossRef]
- Hartley, W.; Edwards, R.; Lepp, N.W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests. Environ. Pollut. 2004, 131, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.H.; Zhai, L.M.; Tan, W.F.; Liu, F.; He, J.Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ. Pollut. 2007, 147, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal (loid) s contaminated soils-to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Violante, A.; Ricciardella, M.; Pigna, M.; Capasso, R. Effects of organic ligands on the sorption of trace elements onto metal oxides and organo-mineral complexes. In Biogeochemistry of Trace Elements in the Rhizosphere; Huang, P.M., Gobran, G.R., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 157–182. [Google Scholar]
- Cook, F.J.; Hicks, W.; Gardner, E.A.; Carlin, G.D.; Froggatt, D.W. Export of acidity in drainage water from acid sulphate soils. Mar. Pollut. Bull. 2000, 41, 319–326. [Google Scholar] [CrossRef]
- Mosley, L.M.; Shand, S.; Self, P.; Fitzpatrick, R. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils. Appl. Geochem. 2014, 41, 49–61. [Google Scholar]
- Sukitprapanon, T.; Suddhiprakarn, A.; Kheoruenromne, I. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation. Chemosphere 2018, 197, 691–702. [Google Scholar] [CrossRef]
- Davies, S.H.R.; Morgan, J.J. Manganese (II) oxidation-kinetics on metal-oxide surfaces. J. Colloid Interface Sci. 1989, 129, 63–77. [Google Scholar] [CrossRef]
- Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Mitchell, D.R.G. Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation. Geochim. Cosmochim. Acta 2008, 72, 4551–4564. [Google Scholar] [CrossRef]
- Kuan, W.H.; Wang, M.K.; Huang, P.M.; Wu, C.W.; Chang, C.M.; Wang, S.L. Effect of citric acid on aluminum hydrolytic speciation. Water Res. 2005, 39, 3457–3466. [Google Scholar] [CrossRef] [PubMed]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G. Rhizospheric organic compounds in the soil-microorganism-plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U.; Roslin, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter-the unbutton model. Soil Biol. Biochem. 2015, 84, 168–176. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 1–12. [Google Scholar] [CrossRef]
- Perez-Benito, J.; Arias, F.C.; Amat, E. A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. J. Colloid Interface Sci. 1996, 177, 288–297. [Google Scholar] [CrossRef]
- Saad, E.M.; Sun, J.; Chen, S.; Borkiewicz, O.J.; Zhu, M.Q.; Duckworth, O.W.; Tang, Y.Z. Siderophore and organic acid promoted dissolution and transformation of Cr (III)-Fe (III)-(oxy) hydroxides. Environ. Sci. Technol. 2017, 51, 3223–3232. [Google Scholar] [CrossRef]
- Novo, L.A.B.; Castro, P.M.L.; Alvarenga, P.; da Silva, E.F. Plant growth-promoting rhizobacteria-assisted phytoremediation of mine soils. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 281–295. [Google Scholar]
- Lee, S.O.; Tran, T.; Jung, B.H.; Kim, S.J.; Kim, M.J. Dissolution of iron oxide using oxalic acid. Hydrometallurgy 2007, 87, 91–99. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, E.J.; Kim, H.W.; Baek, K. Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil. Geoderma 2016, 270, 76–82. [Google Scholar] [CrossRef]
- Gu, B.H.; Schmitt, J.; Chen, Z.H.; Liang, L.Y.; McCarthy, J.F. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–48. [Google Scholar] [CrossRef]
- Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef]
- Mukwaturi, M.; Lin, C.X. Mobilization of heavy metals from urban contaminated soils under water inundation conditions. J. Hazard. Mater. 2015, 285, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Euro. Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Off. J. Eur. Commun. 1986, 181, 6–12. [Google Scholar]
- Jeffries, J. CLEA Software (Version 1.05) Handbook; Environment Agency: Bristol, UK, 2009.
- Spiro, T.G.; Pape, L.; Saltman, P. Hydrolytic polymerization of ferric citrate. I. Chemistry of the polymer. J. Am. Chem. Soc. 1967, 89, 5555–5559. [Google Scholar] [CrossRef]
- Chang, C.A.; Wu, B.H.; Kuan, B.Y. Macrocyclic lanthanide complexes as artificial nucleases and ribonucleases: Effects of pH, metal ionic radii, number of coordinated water molecules, charge, and concentrations of the metal complexes. Inorg. Chem. 2005, 44, 6646–6654. [Google Scholar] [CrossRef]
- Goldberg, R.; Kishore, N.; Lennen, R. Thermodynamic Quantities for the Ionization Reactions of Buffers. J. Phys. Chem. Ref. Data 2002, 31, 231–370. [Google Scholar] [CrossRef]
- Swift, R.S.; McLaren, R.G. Micronutrient adsorption by soils and soil colloids. In Interactions at the Soil Colloid—Soil Solution Interface; Springer: Dordrecht, The Netherlands, 1991; pp. 257–292. [Google Scholar]
- Hill, D.M.; Aplin, A.C. Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains. Limnol. Oceanogr. 2001, 46, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Lofts, S.; Tipping, E. Solid-solution metal partitioning in the Humber rivers: Application of WHAM and SCAMP. Sci. Total Environ. 2000, 251–252, 381–399. [Google Scholar] [CrossRef]
- Weng, L.P.; Temminghoff, E.J.M.; van Riemsdijk, W.H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001, 32, 4436–4443. [Google Scholar] [CrossRef]
- Ash, C.; Tejnecký, V.; Šebek, O.; Houška, J.; Chala, A.T.; Drahota, P.; Drábeka, O. Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching. Geoderma 2015, 241–242, 126–135. [Google Scholar] [CrossRef]
- Gunawardana, C.; Egodawatta, P.; Goonetilleke, A. Adsorption and mobility of metals in build-up on road surfaces. Chemosphere 2015, 119, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Tiberg, C.; Sjöstedt, C.; Gustafsson, J.P. Metal sorption to Spodosol Bs horizons: Organic matter complexes predominate. Chemosphere 2018, 196, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Onireti, O.O.; Lin, C.X.; Qin, J.H. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere 2017, 170, 161–168. [Google Scholar] [CrossRef] [PubMed]
Parameter | Experimental Soil | Guideline Value for Soil with Plant Uptake |
---|---|---|
pH | 7.1 | − |
EC (dS/m) | 0.039 | − |
Total As (mg/kg) | 29.6 | 43 * |
Total Al (mg/kg) | 21,013 | − |
Total Ca (mg/kg) | 32,166 | − |
Total Cd (mg/kg) | 6.19 | 1.8 * |
Total Cr (mg/kg) | 68.8 | 130 * |
Total Cu (mg/kg) | 2768 | 200 ** |
Total Fe (mg/kg) | 28,131 | − |
Total K (mg/kg) | 1859 | − |
Total Mn (mg/kg) | 3865 | − |
Total Na (mg/kg) | 959 | − |
Total Ni (mg/kg) | 811 | 230 * |
Total Pb (mg/kg) | 1498 | 450 * |
Total Zn (mg/kg) | 1276 | 450 ** |
Treatment | 0.01 M Citric Acid | 0.01 M Oxalic Acid | 0.01 M Malic Acid |
---|---|---|---|
T1 | Yes | ||
T2 | Yes | ||
T3 | Yes | ||
T4 | Yes | Yes | |
T5 | Yes | Yes | |
T6 | Yes | Yes | |
T7 | Yes | Yes | Yes |
Treatments | 1 d | 3 d | 5 d | 7 d | 15 d |
---|---|---|---|---|---|
pH | |||||
T1 | 3.63 ± 0.03 bE | 4.11 ± 0.02 cD | 4.44 ± 0.02 cC | 5.38 ± 0.10 bB | 6.83 ± 0.08 aA |
T2 | 3.34 ± 0.06 cE | 4.78 ± 0.01 aD | 5.18 ± 0.01 aC | 5.88 ± 0.02 aB | 6.70 ± 0.10 aA |
T3 | 3.88 ± 0.03 aE | 4.50 ± 0.03 bD | 5.04 ± 0.04 bC | 6.01 ± 0.02 aB | 6.76 ± 0.08 aA |
T4 | 2.86 ± 0.02 eE | 3.36 ± 0.01 eD | 3.58 ± 0.01 eC | 4.29 ± 0.02 dB | 5.27 ± 0.12 cA |
T5 | 3.33 ± 0.03 cE | 3.77 ± 0.02 dD | 4.06 ± 0.02 dC | 4.81 ± 0.03 cB | 5.66 ± 0.06 bA |
T6 | 2.99 ± 0.04 dE | 3.71 ± 0.05 dD | 4.07 ± 0.04 dC | 4.83 ± 0.06 cB | 5.87 ± 0.02 bA |
T7 | 2.73 ± 0.01 fE | 3.26 ± 0.00 fD | 3.50 ± 0.00 fC | 4.22 ± 0.04 dB | 4.86 ± 0.07 dA |
Eh (mV) | |||||
T1 | 170 ± 1.70 eA | 149 ± 0.88 dB | 128 ± 0.96 dC | 98.1 ± 4.57 cD | −18.8 ± 3.33 fE |
T2 | 186 ± 3.06 dA | 112 ± 0.81 fB | 86.4 ± 0.61 fC | 67.5 ± 1.31 dD | −7.23 ± 2.02 eE |
T3 | 156 ± 1.91 fA | 127 ± 1.87 eB | 93.9 ± 2.29 eC | 59.4 ± 1.55 eD | −19.2 ± 1.03 fE |
T4 | 213 ± 1.41 bA | 192 ± 0.64 bB | 175 ± 0.38 bC | 160 ± 1.10 aD | 60.6 ± 6.05 bE |
T5 | 187 ± 1.43 dA | 169 ± 1.17 cB | 149 ± 0.95 cC | 130 ± 0.07 bD | 40.1 ± 3.07 cE |
T6 | 205 ± 2.41 cA | 172 ± 2.69 cB | 147 ± 2.37 cC | 128 ± 3.31 bD | 29.7 ± 1.02 dE |
T7 | 220 ± 0.61 aA | 197 ± 0.19 aB | 180 ± 0.12 aC | 164 ± 2.31 aD | 81.3 ± 3.44 aE |
EC (μS/cm) | |||||
T1 | 1374 ± 43.4 cA | 1016 ± 2.85 dB | 1385 ± 24.0 bA | 874 ± 7.00 cC | 25.6 ± 0.21 cD |
T2 | 839 ± 17.7 eA | 311 ± 2.03 gC | 360 ± 4.04 eB | 196 ± 3.70 dD | 6.83 ± 0.09 eE |
T3 | 1319 ± 15.6 cA | 977 ± 7.75 eB | 1390 ± 7.88 bA | 867 ± 3.61 cC | 25.8 ± 0.72 cD |
T4 | 1820 ± 26.6 aA | 1132 ± 0.88 cC | 1528 ± 4.00 aB | 921 ± 3.18bcD | 25.5 ± 0.43 cE |
T5 | 1375 ± 48.2 cC | 1590 ± 7.86 aA | 1406 ± 12.9 bB | 1093 ± 169 bD | 41.2 ± 0.37 aE |
T6 | 985 ± 17.8 dA | 941 ± 3.28 fB | 785 ± 2.96 dC | 739 ± 11.1 cD | 18.6 ± 0.33 dE |
T7 | 1517 ± 1.53 bA | 1526 ± 2.65 bA | 1336 ± 5.49 cB | 1330 ± 4.67 aB | 37.9 ± 0.18 bC |
Treatment | 1 d | 3 d | 5 d | 7 d | 15 d |
---|---|---|---|---|---|
Al | |||||
T1 | 347 ± 14.8 cD | 533 ± 7.06 eC | 648 ± 6.64 dB | 744 ± 19.6 dB | 1632 ± 27.7 aA |
T2 | 368 ± 7.52 cC | 348 ± 4.69 fD | 273 ± 7.55 fE | 1279 ± 14.3 bA | 1144 ± 10.5 cAB |
T3 | 156 ± 9.59 dE | 261 ± 6.04 gD | 322 ± 2.16 eC | 794 ± 2.99 dB | 1436 ± 3.93 bA |
T4 | 634 ± 25.9 aC | 929 ± 11.3 bAB | 1048 ± 12.2 bA | 1157 ± 20.8 cA | 631 ± 20.4 fC |
T5 | 494 ± 14.1 bC | 751 ± 8.26 cB | 885 ± 5.99 cA | 337 ± 4.10 eD | 688 ± 13.0 eB |
T6 | 480 ± 21.7 bC | 624 ± 16.7 dB | 662 ± 22.3 dB | 1135 ± 21.0 cA | 312 ± 8.78 gD |
T7 | 674 ± 3.10 aE | 1055 ± 15.9 aC | 1237 ± 10.5 aB | 1603 ± 20.4 aA | 791 ± 23.7 dD |
Fe | |||||
T1 | 287 ± 10.9 eE | 527 ± 3.63 dD | 714 ± 10.9 dC | 1066 ± 28.2 dB | 2583 ± 40.9 aA |
T2 | 339 ± 4.11 dC | 190 ± 7.80 eD | 94.4 ± 3.18 gE | 1487 ± 11.5 cB | 2340 ± 33.2 bA |
T3 | 105 ± 6.19 fE | 208 ± 5.20 eD | 328 ± 31.2 fC | 682 ± 5.85 eB | 1674 ± 23.3 cA |
T4 | 639 ± 22.3 bD | 982 ± 23.2 bC | 1132 ± 14.7 bB | 1556 ± 17.0 bA | 1170 ± 17.3 dB |
T5 | 406 ± 5.77 cD | 757 ± 54.9c AB | 883 ± 8.77 cA | 364 ± 38.6 fD | 589 ± 19.5 eC |
T6 | 414 ± 9.97 cB | 522 ± 17.4 dA | 568 ± 18.2 eA | 400 ± 0.03 fBC | 381 ± 16.7 fC |
T7 | 707 ± 15.9 aD | 1100 ± 2.77 aC | 1346 ± 6.66 aB | 1967 ± 18.2 aA | 1142 ± 6.54 dC |
Mn | |||||
T1 | 183 ± 10.9 eD | 323 ± 7.24 dC | 416 ± 7.44 dB | 472 ± 30.1 cB | 1054 ± 11.9 aA |
T2 | 158 ± 0.20 eC | 125 ± 1.70 fCD | 83.7 ± 2.95 gE | 616 ± 42.4 bB | 885 ± 5.87 bA |
T3 | 80.6 ± 3.35 fE | 144 ± 3.22 eD | 225 ± 2.60 fC | 491 ± 32.1 cB | 746 ± 16.6 cA |
T4 | 325 ± 13.2 bD | 507 ± 8.45 bBC | 543 ±4.66 cB | 700 ± 19.9 bA | 73.8 ± 4.84 fE |
T5 | 288 ± 9.84 cD | 501 ± 4.04 bB | 563± 4.01 bA | 341 ± 39.9 dCD | 372 ± 9.07 eC |
T6 | 244 ± 9.73 dC | 354 ± 6.28 cB | 359 ± 6.76 eB | 96.8 ± 6.86 eD | 369 ± 7.05 eA |
T7 | 370±1.02 aD | 641 ± 6.14 aC | 702 ± 6.34 aB | 954 ± 6.81 aA | 688 ± 3.24 dB |
Time | Element | Al | Fe | Mn |
---|---|---|---|---|
1 d | Al | 1 | ||
Fe | 0.982 ** | 1 | ||
Mn | 0.982 ** | 0.953 ** | 1 | |
3 d | Al | 1 | ||
Fe | 0.984 ** | 1 | ||
Mn | 0.977 ** | 0.976 ** | 1 | |
5 d | Al | 1 | ||
Fe | 0.985 ** | 1 | ||
Mn | 0.970 ** | 0.978 ** | 1 | |
7 d | Al | 1 | ||
Fe | 0.770 ** | 1 | ||
Mn | 0.576 ** | 0.915 ** | 1 | |
15 d | Al | 1 | ||
Fe | 0.885 ** | 1 | ||
Mn | 0.822 ** | 0.797 ** | 1 |
Time | Element | As | Cd | Cr | Cu | Pb | Zn | Ni |
---|---|---|---|---|---|---|---|---|
1 d | Al | 0.907 ** | 0.397 | 0.954 ** | 0.964 ** | 0.077 | 0.979 ** | 0.972 ** |
Fe | 0.941 ** | 0.351 | 0.929 ** | 0.923 ** | −0.026 | 0.944 ** | 0.943 ** | |
Mn | 0.841 ** | 0.552 ** | 0.980 ** | 0.934 ** | 0.227 | 0.998 ** | 0.987 ** | |
3 d | Al | 0.986 ** | 0.744 ** | 0.961 ** | 0.889 ** | 0.232 | 0.965 ** | 0.943 ** |
Fe | 0.977 ** | 0.800 ** | 0.943 ** | 0.884 ** | 0.296 | 0.968 ** | 0.956 ** | |
Mn | 0.978 ** | 0.850 ** | 0.983 ** | 0.944 ** | 0.392 | 0.993 ** | 0.974 ** | |
5 d | Al | 0.980 ** | 0.524 * | 0.967 ** | 0.732 ** | 0.248 | 0.962 ** | 0.923 ** |
Fe | 0.978 ** | 0.556 ** | 0.947 ** | 0.767 ** | 0.292 | 0.963 ** | 0.942 ** | |
Mn | 0.989 ** | 0.619 ** | 0.970 ** | 0.865 ** | 0.418 | 0.991 ** | 0.971 ** | |
7 d | Al | 0.658 ** | −0.109 | 0.565 ** | 0.093 | −0.065 | 0.637 ** | 0.586 ** |
Fe | 0.925 ** | 0.249 | 0.890 ** | 0.643 ** | 0.366 | 0.934 ** | 0.923 ** | |
Mn | 0.944** | 0.340 | 0.950 ** | 0.829 ** | 0.393 | 0.943 ** | 0.962 ** | |
15 d | Al | 0.790 ** | −0.270 | 0.864 ** | 0.322 | 0.077 | 0.852 ** | 0.808 ** |
Fe | 0.909 ** | −0.097 | 0.889** | 0.257 | 0.400 | 0.934 ** | 0.863 ** | |
Mn | 0.838 ** | 0.216 | 0.894 ** | 0.116 | 0.414 | 0.636 ** | 0.970 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Enya, O.; Lin, C. Dynamics of Fe, Mn, and Al Liberated from Contaminated Soil by Low-Molecular-Weight Organic Acids and Their Effects on the Release of Soil-Borne Trace Elements. Appl. Sci. 2018, 8, 2444. https://doi.org/10.3390/app8122444
Qin J, Enya O, Lin C. Dynamics of Fe, Mn, and Al Liberated from Contaminated Soil by Low-Molecular-Weight Organic Acids and Their Effects on the Release of Soil-Borne Trace Elements. Applied Sciences. 2018; 8(12):2444. https://doi.org/10.3390/app8122444
Chicago/Turabian StyleQin, Junhao, Osim Enya, and Chuxia Lin. 2018. "Dynamics of Fe, Mn, and Al Liberated from Contaminated Soil by Low-Molecular-Weight Organic Acids and Their Effects on the Release of Soil-Borne Trace Elements" Applied Sciences 8, no. 12: 2444. https://doi.org/10.3390/app8122444
APA StyleQin, J., Enya, O., & Lin, C. (2018). Dynamics of Fe, Mn, and Al Liberated from Contaminated Soil by Low-Molecular-Weight Organic Acids and Their Effects on the Release of Soil-Borne Trace Elements. Applied Sciences, 8(12), 2444. https://doi.org/10.3390/app8122444