Modeling of Muscle Activation from Electromyography Recordings in Patients with Cerebral Palsy
Abstract
:1. Introduction
2. Methods
2.1. Recording of EMG Signal
2.2. Analysis and Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Cerebral Palsy |
EMG | Electromyography |
M. rectus femoris | Musculus rectus femoris |
M. biceps femoris | Musculus biceps femoris |
M. tibialis anterior | Musculus tibialis anterior |
M. gastrocnemius | Musculus gastrocnemius |
GMFCS | Gross Motor Function Classification Scale |
MAS | Modified Ashworth Spasticity |
ND | Norm-Distance |
LRF | Left rectus femoris |
LBF | Left biceps femoris |
LTA | Left tibialis anterior |
LGT | Left gastrocnemius. |
References
- Stotz, S. Therapie der Infantilen Cerebralparese; Pflaum Verlag: München, Germany, 2000. [Google Scholar]
- Koman, L.A.; Smith, B.P.; Shilt, J.S. Cerebral palsy. Lancet 2004, 363, 1619–1631. [Google Scholar] [CrossRef]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damino, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krägeloh-Mann, I.; Cans, C. Cerebral palsy update. Brain Dev. 2009, 31, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Eyre, J.A.; Miller, S.; Clowry, G.J.; Conway, E.A.; Watts, C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 2000, 123, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippold, O. The relation between integrated action potentials in a human muscle and its isometric tension. J. Physiol. 1952, 117, 492–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, J.J.; Bigland-Ritchie, B. Linear and nonlinear surface EMG/Force relationships in human muscles. Am. J. Phys. Med. 1983, 62, 287–299. [Google Scholar] [PubMed]
- Hof, A. The relationship between electromyogram and muscle force. Sportverletz. Sportschaden Organ Ges. Orthop.-Traumatol. Sportmed. 1997, 11, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang-Fredriksen, A. Electrical activity and force during voluntary contraction of normal and diseased muscle. Acta Neurol. Scand. 1981, 63, 7–60. [Google Scholar] [CrossRef]
- Reinbolt, J.A.; Fox, M.D.; Arnold, A.S.; Õunpuu, S.; Delp, S.L. Importance of preswing rectus femoris activity in stiff-knee gait. J. Biomech. 2008, 41, 2362–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, J.; Schwartz, M.; Arnold, A.; Delp, S. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J. Biomech. 2008, 41, 960–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.T.V.; Sanger, T.D. Force variability during Isometric biceps contraction in children with secondary dystonia due to cerebral palsy. Mov. Disord. 2009, 24, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.; Requejo, P.; Fowler, E. Joint moment contributions to swing knee extension acceleration during gait in individuals with spastic diplegic cerebral palsy. Gait Posture 2011, 33, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Park, H.; Stanley, C.; Kim, J.; Kim, J.; Damiano, D. A practical strategy for sEMG-based knee joint moment estimation during gait and its validation in individuals with cerebral palsy. IEEE Trans. Biomed. Eng. 2012, 59, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Alves-Pinto, A.; Blumenstein, T.; Turova, V.; Lampe, R. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer. Neuropsychiatr. Dis. Treat. 2016, 12, 1445. [Google Scholar] [PubMed] [Green Version]
- Roy, S.; Alves-Pinto, A.; Lampe, R. Characteristics of Lower Leg Muscle Activity in Patients with Cerebral Palsy during Cycling on an Ergometer. BioMed Res. Int. 2018, 2018, 6460981. [Google Scholar] [CrossRef] [PubMed]
- Phoebe, R.; MBChB, D.W.; Suzanne, F.; Yumna, A.K.; Ross, T. A Descriptive Comparison of Sprint Cycling Performance and Neuromuscular Characteristics in Able-Bodied Athletes and Paralympic Athletes with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2015, 94, 28–37. [Google Scholar]
- Kaplan, S. Cycling patterns in children with and without cerebral palsy. Dev. Med. Child Neurol. 1995, 37, 620. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Caldwell, G.E. Muscle coordination in cycling: Effect of surface incline and posture. J. Appl. Physiol. 1998, 85, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.S.; Lloyd, D.G.; Manal, K.; Besier, T.F. Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command. J. Appl. Biomech. 2004, 20, 367–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Q.; Bassett, D.N.; Manal, K.; Buchanan, T.S. An EMG-driven Model to Estimate Muscle Forces and Joint Moments in Stroke Patients. Comput. Biol. Med. 2009, 39, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with Cerebral Palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Gregson, J.M.; Leathley, M.; Moore, A.; Sharma, A.K.; Smith, T.L.; Watkins, C.L. Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity. Arch. Phys. Med. Rehabil. 1999, 80, 1013–1016. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar] [PubMed]
- Thelen, D.G.; Schultz, A.B.; Fassois, S.D.; Asthon-Miller, J.A. Identification of Dynamic Myoelectric Signal-to-Force Models during Isometric Lumbar Muscle Contractions. J. Biomech. 1994, 27, 907–919. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Buchanan, T.S. A model of load sharing between muscles and soft tissues at the human knee during static tasks. J. Biomech. Eng. 1996, 118, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Corcos, D.M.; Gottlieb, G.L.; Latash, M.L.; Almeida, G.L.; Agarwal, G.C. Electromechanical Delay: An Experimental Artifact. J. Electromyogr. Kinesiol. 1992, 2, 59–68. [Google Scholar] [CrossRef]
- Hull, M.L.; Hawkins, D. Analysis of muscular work in multisegmental movements: Application to cycling. In Multiple Muscle Systems: Biomechanics and Movement Organization; Winters, J.M., Woo, S.L.-Y., Eds.; Springer: New York, NY, USA, 1990; pp. 621–638. [Google Scholar]
- Manal, K.; Gonzalez, R.V.; Lloyd, D.G.; Buchanan, T.S. A real-time EMG-driven virtual arm. Comput. Biol. Med. 2002, 32, 25–36. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Patikas, D.; Wolf, S.; Schuster, W.; Armbrust, P.; Dreher, T.; Döderlein, L. Electromyographic patterns in children with cerebral palsy: Do they change after surgery? Gait Posture 2007, 26, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Loose, T.; Schablowski, M.; Döderlein, L.; Rupp, R.; Gerner, H.J.; Bretthauer, G.; Mikut, R. Automated feature assessment in instrumented gait analysis. Gait Posture 2006, 23, 331–338. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, S.; Alves-Pinto, A.; Lampe, R. Modeling of Muscle Activation from Electromyography Recordings in Patients with Cerebral Palsy. Appl. Sci. 2018, 8, 2345. https://doi.org/10.3390/app8122345
Roy S, Alves-Pinto A, Lampe R. Modeling of Muscle Activation from Electromyography Recordings in Patients with Cerebral Palsy. Applied Sciences. 2018; 8(12):2345. https://doi.org/10.3390/app8122345
Chicago/Turabian StyleRoy, Susmita, Ana Alves-Pinto, and Renée Lampe. 2018. "Modeling of Muscle Activation from Electromyography Recordings in Patients with Cerebral Palsy" Applied Sciences 8, no. 12: 2345. https://doi.org/10.3390/app8122345
APA StyleRoy, S., Alves-Pinto, A., & Lampe, R. (2018). Modeling of Muscle Activation from Electromyography Recordings in Patients with Cerebral Palsy. Applied Sciences, 8(12), 2345. https://doi.org/10.3390/app8122345