Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome
Abstract
:1. Introduction
2. Field Analysis
3. Numerical Results and Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House: Boston, MA, USA, 1997; pp. 103–183. ISBN 978-1-59693-441-2. [Google Scholar]
- Li, L.W.; Leong, M.S.; Ma, X.; Yeo, T.S. Analysis of a circular aperture antenna and its covered dielectric hemispherical radome shell over ground plane: Near- and far-zone patterns. Microw. Opt. Technol. Lett. 1999, 21, 238–243. [Google Scholar] [CrossRef]
- Arvas, E.; Rahhalarabi, A.; Pekel, U.; Gundogan, E. Electromagnetic transmission through a small radome of arbitrary shape. IEE Proc. H (Microw. Antennas Propag.) 1990, 137, 401–405. [Google Scholar] [CrossRef]
- He, M.; Xu, X.; Hu, B.; Zheng, Y. Accurate analysis of arbitrarily shaped wire antenna-dielectric radome structures. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 408–410. [Google Scholar] [CrossRef]
- Meng, H.; Dou, W.; Yin, K. Analysis of antenna-radome system at millimeter wave band. In Proceedings of the 2008 Global Symposium on Millimeter Waves, Nanjing, China, 20–24 April 2008. [Google Scholar]
- Lu, C.-C. Dielectric radome analysis using multilevel fast multiple algorithm. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Boston, MA, USA, 8–13 July 2001. [Google Scholar]
- Meng, H.; Dou, W. Hybrid IPO-BI-FEM for the analysis of 2D large radome with complex structure. Microw. Opt. Technol. Lett. 2009, 51, 1348–1353. [Google Scholar] [CrossRef]
- Martini, E.; Caminita, F.; Nannetti, M.; Maci, S. Fast analysis of FSS radome for antenna RCS reduction. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006. [Google Scholar]
- D’Elia, U.; Pelosi, G.; Pichot, C.; Selleri, S.; Zoppi, M. A physical optics approach to the analysis of large frequency selective radomes. Prog. Electromagn. Res. 2013, 138, 537–553. [Google Scholar] [CrossRef]
- Kim, J.H.; Chun, H.J.; Hong, I.P.; Kim, Y.J.; Park, Y.B. Analysis of FSS radomes based on physical optics method and ray tracing technique. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 868–871. [Google Scholar]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Spada, L.L.; Vegni, L. Near-zero-index wires. Opt. Express 2017, 25, 23699–23708. [Google Scholar] [CrossRef] [PubMed]
- Yohan, L.; Sun-Je, K.; Hyeonsoo, P.; Byoungho, L. Metamaterials and metasurfaces for sensor applications. Sensors 2017, 17, 1726. [Google Scholar]
- Spada, L.L.; Vegni, L. Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 2018, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Iovine, R.; Spada, L.L.; Vegni, L. Optical properties of modified nanorod particles for biomedical sensing. IEEE Trans. Magn. 2014, 50, 169–172. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Padooru, Y.R.; Yakovlev, A.B.; Kaipa, C.S.; Hanson, G.W.; Medina, F.; Mesa, F.; Glisson, A.W. New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers. IEEE Trans. Antennas Propag. 2012, 60, 5727–5742. [Google Scholar] [CrossRef]
- Monticone, F.; Alù, A. Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B 2014, 23, 047809. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, Y.B. Electromagnetic radiation from a circular cavity with circular apertures in a conducting plane. IEEE Trans. Antennas Propag. 2014, 62, 4846–4851. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: New York, NY, USA, 2012; pp. 328–333. ISBN 978-0-470-58948-9. [Google Scholar]
- Philips, B.; Parker, E.A.; Langley, R.J. Ray tracing analysis of FSS radome for antenna RCS reduction. IEEE Proc. Microw. Antennas Propag. 1995, 143, 193–200. [Google Scholar] [CrossRef]
- Spada, L.L.; Iovine, R.; Tarparelli, R.; Vegni, L. Conical nanoparticles for blood disease detection. Adv. Nanopart. 2013, 2, 259–265. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Li, K.; Gong, S. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 80–83. [Google Scholar] [CrossRef]
- Iovine, R.; Spada, L.L.; Vegni, L. Nanoplasmonic sensor for chemical measurements. Opt. Sens. 2013, 8774, 877411. [Google Scholar]
- Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, A.M.; Kim, J.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commun. 2018, 9, 2673. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value | Parameters | Value |
---|---|---|---|
D1 | 284.8 mm | L1 | 290.5 mm |
D2 | 286.4 mm | L2 | 291.5 mm |
D3 | 292.3 mm | L3 | 295.2 mm |
D4 | 292.4 mm | L4 | 295.3 mm |
D5 | 298.4 mm | L5 | 299.1 mm |
D6 | 300 mm | L6 | 300 mm |
ϵr1 | 4.35 | δ1 | 0.0032 |
ϵr2 | 1 | δ2 | 0.0038 |
ϵr3 | 4.4 | δ3 | 0.02 |
ϵr4 | 1 | δ4 | 0.0038 |
ϵr5 | 4.35 | δ5 | 0.0032 |
1.34 × 10−14 | −3.89 × 10−1 | 1.40 × 10−1 | −3.59 × 10−1 | −1.36 × 10−14 | |||||
2.25 × 10−15 | −2.89 × 10−2 | −2.05 | −1.88 × 10−2 | −2.29 × 10−15 | |||||
5.57 × 10−16 | 2.48 × 10−2 | 1.53 | 3.01 × 10−2 | −5.7 × 10−16 | |||||
1.18 × 10−16 | 2.87 × 10−1 | 9.92 × 10−1 | 2.92 × 10−1 | −1.75 × 10−17 | |||||
1.64 × 10−17 | −2.41 | 1.82 | −2.44 | −1.59 × 10−19 | |||||
−6.85 × 10−20 | 2.89 × 10−3 | −1.82 | 2.92 × 10−3 | 7.03 × 10−19 | |||||
−7.44 × 10−19 | 6.69 × 10−6 | −3.42 | 7.02 × 10−6 | 1.99 × 10−19 | |||||
−7.33 × 10−22 | −9.2 × 10−8 | −2 × 10−5 | −9.3 × 10−8 | 6.36 × 10−22 | |||||
2.06 × 10−15 | −4.98 × 10−1 | −8.15 × 10−2 | −4.97 × 10−1 | −1.77 × 10−15 | |||||
3.56 × 10−16 | −1.7 × 10−1 | −1.52 | −1.66 × 10−1 | −2.91 × 10−16 | |||||
9.16 × 10−17 | −1 × 10−1 | 6.52 × 10−1 | −9.1 × 10−2 | −7.06 × 10−17 | |||||
2.07 × 10−17 | −4.31 × 10−2 | 3.33 × 10−1 | −5.44 × 10−2 | −1.44 × 10−17 | |||||
3.22 × 10−18 | 3.1 × 10−1 | 3.27 × 10−1 | 3.31 × 10−1 | −1.64 × 10−18 | |||||
9.88 × 10−20 | −2.1 × 10−4 | −4.46 × 10−2 | −2.1 × 10−4 | 2.15 × 10−19 | |||||
−1.22 × 10−19 | −7.1 × 10−6 | −9.29 × 10−2 | −6.5 × 10−6 | 1.68 × 10−19 | |||||
−3.42 × 10−22 | −1.9 × 10−8 | −8 × 10−6 | −1.6 × 10−8 | 3.07 × 10−22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, S.; Shin, H.; Jung, K.-Y.; Choo, H.; Park, Y.B. Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome. Appl. Sci. 2018, 8, 2346. https://doi.org/10.3390/app8122346
Kim J, Lee S, Shin H, Jung K-Y, Choo H, Park YB. Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome. Applied Sciences. 2018; 8(12):2346. https://doi.org/10.3390/app8122346
Chicago/Turabian StyleKim, Jihyung, Sangsu Lee, Hokeun Shin, Kyung-Young Jung, Hosung Choo, and Yong Bae Park. 2018. "Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome" Applied Sciences 8, no. 12: 2346. https://doi.org/10.3390/app8122346
APA StyleKim, J., Lee, S., Shin, H., Jung, K.-Y., Choo, H., & Park, Y. B. (2018). Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome. Applied Sciences, 8(12), 2346. https://doi.org/10.3390/app8122346