Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces
Abstract
1. Introduction
2. Structures and Calculation Methods
3. Results and Discussion
3.1. Interface Structures
3.2. Interface Magnetic Behaviors
3.3. Interface Electronic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Segu, D.Z.; Khan, P.V.; Hwang, P. Experimental and direct numerical analysis of hard-disk drive. J. Mech. Sci. Technol. 2018, 32, 3507–3513. [Google Scholar] [CrossRef]
- Kubota, T.; Ina, Y.; Wen, Z.; Takanashi, K. Interface Tailoring Effect for Heusler Based CPP-GMR with an L12-Type Ag3Mg Spacer. Materials 2018, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Satoshi, S.; Susumu, H.; Masayuki, T.; Yuzo, K.; Hitoshi, I. All-metallic nonlocal spin valves using polycrystalline Co2(FeMn)Si Heusler alloy with large output. Appl. Phys. Express 2015, 8, 023103. [Google Scholar]
- Koki, M.; Shinya, K.; Yukiko, K.T.; Kouta, K.; Yoshichika, O.; Seiji, M.; Kazuhiro, H. High output voltage of magnetic tunnel junctions with a Cu(In0.8Ga0.2)Se2 semiconducting barrier with a low resistance–area product. Appl. Phys. Express 2017, 10, 013008. [Google Scholar]
- Li, S.; Takahashi, Y.K.; Sakuraba, Y.; Chen, J.; Furubayashi, T.; Mryasov, O.; Faleev, S.; Hono, K. Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve. J. Appl. Phys. 2016, 119, 093911. [Google Scholar] [CrossRef]
- Çakır, A.; Acet, M. Non-volatile high-temperature shell-magnetic pinning of Ni-Mn-Sn Heusler precipitates obtained by decomposition under magnetic field. J. Magn. Magn. Mater. 2018, 448, 13–18. [Google Scholar] [CrossRef]
- Nayak, A.K.; Kumar, V.; Ma, T.; Werner, P.; Pippel, E.; Sahoo, R.; Damay, F.; Rößler, U.K.; Felser, C.; Parkin, S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 2017, 548, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; D’souza, S.W.; Nayak, J.; Suard, E.; Chapon, L.; Senyshyn, A.; Petricek, V.; Skourski, Y.; Nicklas, M.; Felser, C.; et al. Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa. Nat. Commun. 2016, 7, 12671. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Fenglong, W.; Gesang, D.; Jinli, Y.; Changjun, J. Piezostrain tuning non-volatile 90° magnetic easy axis rotation in Co2FeAl Heusler alloy film grown on Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures. J. Phys. D Appl. Phys. 2016, 49, 455001. [Google Scholar]
- Dutta, S.; Nikonov, D.E.; Manipatruni, S.; Young, I.A.; Naeemi, A. Overcoming thermal noise in non-volatile spin wave logic. Sci. Rep. 2017, 7, 1915. [Google Scholar] [CrossRef] [PubMed]
- Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, B.; Yuan, H.; Feng, Y.; Chen, H. The defect-induced changes of the electronic and magnetic properties in the inverse Heusler alloy Ti2CoAl. J. Solid State Chem. 2015, 221, 311–317. [Google Scholar] [CrossRef]
- Vasileiadis, T.; Waldecker, L.; Foster, D.; Da Silva, A.; Zahn, D.; Bertoni, R.; Palmer, R.E.; Ernstorfer, R. Ultrafast heat flow in heterostructures of Au nanoclusters on thin-films: Atomic-disorder induced by hot electrons. arXiv, 2018; arXiv:1803.00074. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Hongkuan, Y.; Anlong, K.; Yu, F.; Hong, C. Tunable magnetism and half-metallicity in bulk and (100) surface of quaternary Co2MnGe1−xGax Heusler alloy. J. Phys. D Appl. Phys. 2011, 44, 405301. [Google Scholar]
- Shen, X.; Yu, G.; Zhang, C.; Wang, T.; Huang, X.; Chen, W. A theoretical study on the structures and electronic and magnetic properties of new boron nitride composite nanosystems by depositing superhalogen Al13 on the surface of nanosheets/nanoribbons. Phys. Chem. Chem. Phys. 2018, 20, 15424–15433. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, D.; Wang, S.; Ma, Q.; Liang, S.; Wei, H.; Han, X.; Hesjedal, T.; Ward, R.; Kohn, A. Effect of interfacial structures on spin dependent tunneling in epitaxial L10-FePt/MgO/FePt perpendicular magnetic tunnel junctions. J. Appl. Phys. 2015, 117, 083904. [Google Scholar] [CrossRef]
- Xu, A.; Shi, L.; Zhao, T. Thermal effects on the sedimentation behavior of elliptical particles. Int. J. Heat Mass Tran. 2018, 126, 753–764. [Google Scholar] [CrossRef]
- Grimm, R.; Marchi, S. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability. Earth Planet. Sci. Lett. 2018, 485, 1–8. [Google Scholar] [CrossRef]
- Parkin, S.S.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, E.; Tsunegi, S.; Oogane, M.; Naganuma, H.; Ando, Y. The effect of inserting thin Co2MnAl layer into the Co2MnSi/MgO interface on tunnel magnetoresistance effect. J. Phys. Conf. Ser. 2011, 266, 012104. [Google Scholar] [CrossRef]
- Liu, H.-X.; Honda, Y.; Taira, T.; Matsuda, K.-I.; Arita, M.; Uemura, T.; Yamamoto, M. Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling. Appl. Phys. Lett. 2012, 101, 132418. [Google Scholar] [CrossRef]
- Bai, Z.; Lu, Y.; Shen, L.; Ko, V.; Han, G.; Feng, Y. Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device. J. Appl. Phys. 2012, 111, 093911. [Google Scholar] [CrossRef]
- Rotjanapittayakul, W.; Prasongkit, J.; Rungger, I.; Sanvito, S.; Pijitrojana, W.; Archer, T. Search for alternative magnetic tunnel junctions based on all-Heusler stacks. arXiv, 2018; arXiv:1805.08603. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Taira, T.; Ishikawa, T.; Itabashi, N.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a Heusler alloy Co2MnGe thin film and a MgO barrier. J. Phys. D Appl. Phys. 2009, 42, 084015. [Google Scholar] [CrossRef]
- Furubayashi, T.; Kodama, K.; Sukegawa, H.; Takahashi, Y.; Inomata, K.; Hono, K. Current-perpendicular-to-plane giant magnetoresistance in spin-valve structures using epitaxial Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 trilayers. Appl. Phys. Lett. 2008, 93, 122507. [Google Scholar] [CrossRef]
- Katsnelson, M.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.; De Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Guo, Q.; Li, Y.D.; Wen, L. Total ionizing dose and synergistic effects of magnetoresistive random-access memory. Nucl. Sci. Tech. 2018, 29, 111. [Google Scholar] [CrossRef]
- Bayar, E.; Kervan, N.; Kervan, S. Half-metallic ferrimagnetism in the Ti2CoAl Heusler compound. J. Magn. Magn. Mater. 2011, 323, 2945–2948. [Google Scholar] [CrossRef]
- Drief, M.; Guermit, Y.; Benkhettou, N.; Rached, D.; Rached, H.; Lantri, T. First-Principle Study of Half-Metallic Ferrimagnet Behavior in Titanium-Based Heusler Alloys Ti2FeZ (Z = Al, Ga, and In). J. Supercond. Nov. Magn. 2018, 31, 1059–1065. [Google Scholar] [CrossRef]
- Dahmane, F.; Benalia, S.; Djoudi, L.; Tadjer, A.; Khenata, R.; Doumi, B.; Aourag, H. First-principles study of structural, electronic, magnetic and half-metallic properties of the Heusler alloys Ti2ZAl (Z = Co, Fe, Mn). J. Supercond. Nov. Magn. 2015, 28, 3099–3104. [Google Scholar] [CrossRef]
- Sterwerf, C.; Meinert, M.; Schmalhorst, J.-M.; Reiss, G. High TMR ratio in Co2FeSi and Fe2CoSi based magnetic tunnel junctions. arXiv, 2013; arXiv:1308.2072. [Google Scholar]
- Chen, Y.; Wu, B.; Feng, Y.; Yuan, H.-K.; Chen, H. Half-metallicity and magnetism of the quaternary inverse full-Heusler alloy Ti2−xMxCoAl (M = Nb, V) from the first-principles calculations. Eur. Phys. J. B 2014, 87, 24. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, B.; Yuan, H.; Kuang, A.; Chen, H. Magnetism and half-metallicity in bulk and (100) surface of Heusler alloy Ti2CoAl with Hg2CuTi-type structure. J. Alloys Compd. 2013, 557, 202–208. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Filippov, S.; Magadov, K.Y. Spin polarization-scaling quantum maps and channels. Lobachevskii J. Math. 2018, 39, 65–70. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.-M. First-principles study on the thermodynamic stability, magnetism, and half-metallicity of full-Heusler alloy Ti2FeGe (001) surface. Phys. Lett. A 2017, 381, 1592–1597. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xia, T.S. Spin Injection into Graphene from Heusler Alloy Co2MnGe (111) Surface: A First Principles Study. Mater. Sci. Forum 2018, 914, 111–116. [Google Scholar] [CrossRef]
Interface Termination | Bond Type | Bond Length (Å) |
---|---|---|
CoCo–Mg | Co–Mg | 4.28 |
TiTi–Mg | Ti–Mg | 4.05 |
AlAl–Mg | Al–Mg | 3.99 |
TiAl–Mg | Al–Mg | 3.99 |
Ti–Mg | 4.06 | |
TiCo–Mg | Al–Mg | 3.55 |
Co–Mg | 4.02 | |
CoCo–O | Co–O | 2.07 |
TiTi–O | Ti–O | 2.14 |
AlAl–O | Al–O | 2.06 |
TiAl–O | Al–O | 2.16 |
Ti–O | 2.15 | |
TiCo–O | Ti–O | 2.08 |
Co–O | 2.83 |
Termination | Layers | Ti | Co | Al | O | Mg |
---|---|---|---|---|---|---|
bulk | 0.94 (1.68) | −0.48 | −0.14 | 0.00 | 0.00 | |
TiAl | (100) surface | 1.08 | −0.36 | −0.18 | 0.00 | 0.00 |
TiCo | (100) surface | 1.70 | −0.20 | −0.10 | 0.00 | 0.00 |
TiAl–Mg | interface | 1.10 | −0.40 * | −0.20 | 0.04 | 0.00 |
middle layer | 0.88 (1.59) | −0.32 | −0.12 | 0.00 | 0.00 | |
TiCo–Mg | interface | 1.64 | −0.07 | 0.09 * | 0.02 | 0.02 |
middle layer | 0.82 (1.62) | −0.24 | −0.12 | 0.00 | 0.00 | |
CoCo–Mg | interface | −0.20 * | 1.26(0.16) | −0.06 * | 0.00 | 0.00 |
middle layer | 0.84 (1.66) | −0.34 | −0.12 | 0.00 | 0.00 | |
TiTi–Mg | interface | 1.02 | 0.28 * | − | 0.02 | 0.03 |
middle layer | 0.86 ( 1.66) | −0.34 | −0.14 | 0.00 | 0.00 | |
AlAl–Mg | interface | 0.34 * | 0.40 * | −0.02 | 0.00 | 0.00 |
middle layer | 0.86 (1.6) | −0.34 | −0.12 | 0.00 | 0.00 | |
TiAl–O | interface | 0.90 | −0.22 * | −0.08 | 0.00 | 0.02 |
middle layer | 0.88 (1.64) | −0.44 | −0.16 | 0.00 | 0.00 | |
TiCo–O | interface | 0.76 | −0.12 | 0.08 * | 0.04 | 0.02 |
middle layer | 0.88 (1.62) | −0.08 | 0.12 | 0.00 | 0.00 | |
CoCo–O | interface | 0.18 * | 0.32(0.14) | −0.06 * | 0.00 | 0.00 |
middle layer | 0.80 (1.66) | −0.38 | −0.12 | 0.00 | 0.00 | |
TiTi–O | interface | 0.32 | 0.10 * | − | 0.00 | 0.00 |
middle layer | 0.88 (1.76) | −0.44 | −0.12 | 0.00 | 0.00 | |
AlAl–O | interface | 1.46 * | 0.56 * | −0.02 | 0.00 | 0.00 |
middle layer | 0.86 (1.70) | −0.40 | −0.12 | 0.00 | 0.00 |
Interface Layers | TiAl–Mg | TiCo–Mg | CoCo–Mg | TiTi–Mg | AlAl–Mg |
I-type P (%) | 66.21 | 20.16 | 8.22 | −1.23 | 22.36 |
I-type N↑ (states/eV) | 5.51 | 6.55 | 3.44 | 6.30 | 4.60 |
I-type N↓ (states/eV) | 1.12 | 4.35 | 2.92 | 6.46 | 2.92 |
II-type P (%) | 65.72 | 19.85 | 8.13 | −0.77 | 22.25 |
II-type N↑ (states/eV) | 5.59 | 6.61 | 3.46 | 6.42 | 4.67 |
II-type N↓ (states/eV) | 1.16 | 4.42 | 2.94 | 6.52 | 2.97 |
Interface Layers | TiAl–Mg | TiCo–Mg | CoCo–Mg | TiTi–Mg | AlAl–Mg |
I-type P (%) | 30.51 | 54.62 | 46.50 | −27.96 | 68.83 |
I-type N↑ (states/eV) | 3.58 | 7.02 | 4.42 | 3.38 | 3.48 |
I-type N↓ (states/eV) | 1.91 | 2.06 | 1.61 | 6.00 | 0.64 |
II-type P (%) | 30.29 | 54.20 | 46.34 | −27.27 | 65.20 |
II-type N↑ (states/eV) | 3.72 | 7.51 | 4.58 | 3.47 | 3.61 |
II-type N↓ (states/eV) | 1.99 | 2.23 | 1.68 | 6.07 | 0.76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Huang, H.; Zhou, G.; Feng, Y.; Chen, Y.; Wang, X. Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Appl. Sci. 2018, 8, 2336. https://doi.org/10.3390/app8122336
Wu B, Huang H, Zhou G, Feng Y, Chen Y, Wang X. Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Applied Sciences. 2018; 8(12):2336. https://doi.org/10.3390/app8122336
Chicago/Turabian StyleWu, Bo, Haishen Huang, Guangdong Zhou, Yu Feng, Ying Chen, and Xiangjian Wang. 2018. "Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces" Applied Sciences 8, no. 12: 2336. https://doi.org/10.3390/app8122336
APA StyleWu, B., Huang, H., Zhou, G., Feng, Y., Chen, Y., & Wang, X. (2018). Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Applied Sciences, 8(12), 2336. https://doi.org/10.3390/app8122336