Revealing Rutherfordine Mineral as an Auxetic Material
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
3. Results
3.1. Mechanical Stability
3.2. Mechanical Properties
3.3. Negative Poisson Ratio
4. Discussion: Crystal Structure Deformation as a Function of the Applied Pressure
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Colmenero, F.; Bonales, L.J.; Cobos, J.; Timón, V. Thermodynamic and Mechanical Properties of Rutherfordine Mineral Based on Density Functional Theory. J. Phys. Chem. C 2017, 121, 5994–6001. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed]
- Lethbridge, Z.A.D.; Walton, R.I.; Marmier, A.S.H.; Smith, C.W.; Evans, K.E. Elastic Anisotropy and Extreme Poisson’s Ratios in Single Crystals. Acta Mater. 2010, 58, 6444–6451. [Google Scholar] [CrossRef] [Green Version]
- Marmier, A.S.H.; Lethbridge, Z.A.D.; Walton, R.I.; Smith, C.W.; Parker, S.C.; Evans, K.E. ElAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic Properties. Comput. Phys. Commun. 2010, 181, 2102–2115. [Google Scholar] [CrossRef] [Green Version]
- Payne, M.C.; Teter, M.P.; Ailan, D.C.; Arias, A.; Joannopoulos, J.D. Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef]
- Bonales, L.J.; Colmenero, F.; Cobos, J.; Timón, V. Spectroscopic Raman Characterization of Rutherfordine: A Combined DFT and Experimental Study. Phys. Chem. Chem. Phys. 2016, 18, 16575–16584. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, F. Characterization of Secondary Phases of Spent Nuclear Fuel under Final Geological Disposal Conditions: Experimental and Theoretical Studies. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 17 September 2017; 443p. [Google Scholar] [CrossRef]
- Colmenero, F.; Bonales, L.J.; Cobos, J.; Timón, V. Study of the Thermal Stability of Studtite by In Situ Raman Spectroscopy and DFT Calculations. Spectrochim. Acta A 2017, 174, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, F.; Bonales, L.J.; Cobos, J.; Timón, V. Structural, Mechanical and Vibrational Study of Uranyl Silicate Mineral Soddyite by DFT Calculations. J. Solid State Chem. 2017, 253, 249–257. [Google Scholar] [CrossRef]
- Colmenero, F.; Bonales, L.J.; Cobos, J.; Timón, V. Density Functional Theory Study of the Thermodynamic and Raman Vibrational Properties of γ-UO3 Polymorph. J. Phys. Chem. C 2017, 121, 14507–14516. [Google Scholar] [CrossRef]
- Colmenero, F.; Bonales, L.J.; Timón, V.; Cobos, J. Structural, mechanical, and Raman spectroscopic characterization of layered uranyl silicate mineral uranophane-α by DFT Methods. Clay Miner. 2018, 1–32. [Google Scholar] [CrossRef]
- Colmenero, F.; Fernández, A.M.; Cobos, J.; Timón, V. Thermodynamic Properties of Uranyl Containing Materials Based on Density Functional Theory. J. Phys. Chem. C 2018, 122, 5254–5267. [Google Scholar] [CrossRef]
- Colmenero, F.; Fernández, A.M.; Cobos, J.; Timón, V. Temperature Dependent Free Energies of Reaction of Uranyl Containing Materials Based on Density Functional Theory. J. Phys. Chem. C 2018, 122, 5268–5279. [Google Scholar] [CrossRef]
- Colmenero, F.; Cobos, J.; Timón, V. Periodic DFT Study of the Structure, Raman Spectrum and Mechanical Properties of Schoepite Mineral. Inorg. Chem. 2018, 57, 4470–4481. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, F.; Fernández, A.M.; Cobos, J.; Timón, V. Becquerelite mineral phase: Crystal structure and thermodynamic and mechanic stability by using periodic DFT. RSC Adv. 2018, 8, 24599–24616. [Google Scholar] [CrossRef]
- Lakes, R.S. Negative-Poisson’s-Ratio Materials: Auxetic Solids. Annu. Rev. Mater. Res. 2017, 47, 63–81. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s Ratio and Modern Materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Lakes, R.S. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Keskar, N.R.; Chelikowsky, J.R. Negative Poisson’s Ratios in Crystalline SiO2 from First-Principles Calculations. Nature 1992, 358, 222–224. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Alderson, A.; Evans, K.E. An Alternative Explanation for the Negative Poisson’s Ratios in α-Cristobalite. Mater. Sci. Eng. A 2006, 423, 219–224. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Zammit, V.; Williams, J.J.; Evans, K.E.; Alderson, A.; Walton, R.I. Natrolite: A Zeolite with Negative Poisson’s Ratios. J. Appl. Phys. 2007, 101, 086102. [Google Scholar] [CrossRef]
- Yao, Y.T.; Alderson, K.L.; Alderson, A. Modeling of Negative Poisson’s Ratio (Auxetic) Crystalline Cellulose Iβ. Cellulose 2016, 23, 3429–3448. [Google Scholar] [CrossRef]
- Tan, J.-C.; Civalleri, B.; Erba, A.; Albanese, E. Quantum Mechanical Predictions to Elucidate the Anisotropic Elastic Properties of Zeolitic Imidazolate Frameworks: ZIF-4 vs. ZIF-zni. CrystEngComm 2015, 17, 375–382. [Google Scholar] [CrossRef]
- Ryder, M.R.; Tan, J.-C. Explaining the Mechanical Mechanisms of Zeolitic Metal–Organic Frameworks: Revealing Auxeticity and Anomalous Elasticity. Dalton Trans. 2016, 45, 4154–4161. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Maassen, J.; Wu, W.; Luo, Z.; Xu, X.; Ye, P.D. Auxetic Black Phosphorus: A 2D Material with Negative Poisson’s Ratio. Nano Lett. 2016, 16, 6701–6708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagdelen, J.; Montoya, J.; De Jong, M.; Persson, K. Computational Prediction of New Auxetic Materials. Nat. Commun. 2017, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.T.; Park, S.D.; Kwon, S.Y.; Park, K.; Kim, S.Y. Negative Poisson’s Ratios in Metal Nanoplates. Nat. Commun. 2014, 5, 3255. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, S.; Zhan, S.; Yuan, S.J.; Yang, B.; Chen, H. Highly Negative Poisson’s Ratio in a Flexible Two-Dimensional Tungsten Carbide Monolayer. Phys. Chem. Chem. Phys. 2018, 20, 18924–18930. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Liao, X.; Li, M.; Xiao, H.; Chen, X. Oxidation-Induced Negative Poisson’s Ratio of Phosphorene. J. Phys. Condens. Matter 2018, 30, 315302. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Gao, Y.; Miao, F.; Zhou, X.F.; Wan, X.G. Strain Effects on Borophene: Ideal Strength, Negative Possion’s Ratio and Phonon Instability. New J. Phys. 2016, 18, 073016. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, P.; Yang, J. δ-Phosphorene: A Two-Dimensional Material with High Negative Poisson’s Ratio. Nanoscale 2017, 9, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Jones, T.E.; Li, W.; Zhou, Y.C. Extreme Poisson’s Ratios and their Electronic Origin in B2 CsCl-type AB Intermetallic Compounds. Phys. Rev. B 2012, 85, 134108. [Google Scholar] [CrossRef]
- Colmenero, F. Anomalous Mechanical Behavior of the Deltic, Squaric, and Croconic Acids. Rep. Progr. Phys 2018. under review. [Google Scholar]
- Colmenero, F.; Cobos, J.; Timón, V. Negative Linear Compressibility in Uranyl Squarate Monohydrate. J. Phys. Cond. Matter. 2018. under review. [Google Scholar]
- Colmenero, F. Mechanical Properties of Anhydrous Oxalic Acid and Oxalic Acid Dihydrate. Mater. Horiz. under review.
- Schmidt, A.J.; Delegard, C.H. Assessment of K Basin Sludge Volume Expansion Resulting from Uranium Corrosion During Storage; Report of the U.S. Department of Energy, Pacific Northwest National Laboratory PNNL-13786; Pacific Northwest National Laboratory: Richland, WA, USA, 2002. Available online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-13786.pdf (accessed on 3 November 2018).
- Delegard, C.H.; Schmidt, A.J.; Chenault, J.W. Mechanical Properties of K Basin Sludge Constituents and Their Surrogates; Report of the U.S. Department of Energy, Pacific Northwest National Laboratory PNNL-14947; Pacific Northwest National Laboratory: Richland, WA, USA, 2004. Available online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-14947.pdf (accessed on 3 November 2018).
- Fritz, I. Elastic properties of UO2 at high pressure. J. Appl. Phys. 1976, 47, 4353–4358. [Google Scholar] [CrossRef]
- Ibrahim, M.; Castelier, E.; Palancher, H.; Bornert, M.; Care, S.; Micha, J.S. Mechanical behaviour near grain boundaries of He-implanted UO2 ceramic polycrystals. J. Nucl. Mater. 2017, 483, 13–20. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Debelle, A.; Boulle, A.; Garrido, F.; Thomas, L.; Demange, V. Mechanical response of UO2 single crystals submitted to low-energy ion irradiation. J. Nucl. Mater. 2015, 467, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Swedish Nuclear Fuel and Waste Management Co., SKB. Final Disposal of Spent Nuclear Fuel. Importance of the Bedrock for Safety; SKB Report 92-20; Swedish Nuclear Fuel and Waste Management Co., SKB: Stockholm, Sweden, 1992; Available online: http://www.skb.se/upload/publications/pdf/TR92-20.pdf (accessed on 3 November 2018).
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- MaterialsStudio. Available online: http://accelrys.com/products/materials-studio (accessed on 20 June 2018).
- Troullier, N.; Martins, J.L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Cote, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, J.; Ye, H.Q. Calculations of single-crystal elastic constants made simple. Comput. Phys. Commun. 2010, 181, 671–675. [Google Scholar] [CrossRef]
- Nye, J.F. The Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: New York, NY, USA, 1985; ISBN 9780198511656. [Google Scholar]
- Weck, P.F.; Kim, E.; Buck, E.C. On the Mechanical Stability of Uranyl Peroxide Hydrates: Implications for Nuclear Fuel Degradation. RSC Adv. 2015, 5, 79090–79097. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; Teubner: Leipzig, Germany, 1962; ISBN 978-3-663-15884-4. [Google Scholar]
- Reuss, A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Lond. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Niu, H.; Wei, P.; Sun, Y.; Chen, C.-X.; Franchini, C.; Li, D.; Li, Y. Electronic, Optical, and Mechanical Properties of Superhard Cold-Compressed Phases of Carbon. Appl. Phys. Lett. 2011, 99, 031901. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Djella, S.; Bououdina, M.; Fenineche, N.; Boudouma, Y. Structural and Elastic Properties of LiBH4 for Hydrogen Storage Applications. J. Alloys Compd. 2012, 534, 20–24. [Google Scholar] [CrossRef]
- Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O. Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2. J. Appl. Phys. 1998, 84, 4891–4904. [Google Scholar] [CrossRef]
- Evans, K.E.; Nkansah, M.A.; Hutchinson, M.I.; Rogers, S.C. Molecular Network Design. Nature 1991, 353, 124. [Google Scholar] [CrossRef]
- Weck, P.F.; Kim, E. Uncloaking the Thermodynamics of the Studtite to Metastudtite Shear-Induced Transformation. J. Phys. Chem. C 2016, 120, 16553–16560. [Google Scholar] [CrossRef]
ij | Cij | |
---|---|---|
Previous Work [1] | Present Work | |
11 | 259.88 | 272.60 |
22 | 23.03 | 22.69 |
33 | 165.27 | 178.07 |
44 | 9.85 | 6.08 |
55 | 65.88 | 66.90 |
66 | 15.06 | 9.87 |
12 | −8.33 | −7.61 |
13 | 72.39 | 77.03 |
23 | −5.18 | −6.12 |
Property | Previous Work [1] | Present Work | |
---|---|---|---|
B | Bulk modulus | 17.97 | 17.90 |
G | Shear modulus | 19.47 | 14.12 |
E | Young modulus | 42.92 | 33.53 |
ν | Poisson ratio | 0.10 | 0.19 |
D | Ductility index | 0.92 | 1.27 |
H | Hardness index | 9.47 | 4.13 |
AU | Universal anisotropy index | 8.82 | 13.28 |
P (GPa) | a (Å) | b (Å) | c (Å) | Vol. (Å3) |
---|---|---|---|---|
0.0 | 4.8257 | 9.3726 | 4.2740 | 193.3119 |
0.152 | 4.8172 | 9.3656 | 4.2768 | 192.9505 |
0.318 | 4.8062 | 9.3650 | 4.2823 | 192.7497 |
0.515 | 4.7959 | 9.3646 | 4.2854 | 192.4651 |
0.667 | 4.7865 | 9.3637 | 4.2899 | 192.2711 |
0.826 | 4.7763 | 9.3639 | 4.2951 | 192.0967 |
1.016 | 4.7670 | 9.3632 | 4.2981 | 191.8452 |
1.329 | 4.7494 | 9.3638 | 4.3053 | 191.4686 |
1.636 | 4.7317 | 9.3625 | 4.3133 | 191.0823 |
1.978 | 4.7146 | 9.3634 | 4.3195 | 190.6871 |
2.325 | 4.6975 | 9.3628 | 4.3277 | 190.3378 |
P (GPa) | U-O3 | U-O2 | U-O2’ | U-O1 | U-C | C-O3 | C-O2 | <CO> | C-O1 | C-C | R(IL) |
---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 2.436 | 2.429 | 2.532 | 1.764 | 2.916 | 1.301 | 1.280 | 1.287 | 2.966 | 4.274 | 4.686 |
0.48 | 2.433 | 2.428 | 2.534 | 1.764 | 2.915 | 1.301 | 1.279 | 1.286 | 2.961 | 4.277 | 4.683 |
1.02 | 2.427 | 2.428 | 2.534 | 1.764 | 2.912 | 1.302 | 1.278 | 1.286 | 2.961 | 4.282 | 4.683 |
1.54 | 2.423 | 2.427 | 2.532 | 1.764 | 2.909 | 1.302 | 1.278 | 1.286 | 2.960 | 4.285 | 4.682 |
2.01 | 2.418 | 2.427 | 2.532 | 1.764 | 2.907 | 1.303 | 1.277 | 1.286 | 2.960 | 4.290 | 4.682 |
2.51 | 2.414 | 2.427 | 2.532 | 1.765 | 2.904 | 1.303 | 1.276 | 1.285 | 2.960 | 4.295 | 4.682 |
3.02 | 2.409 | 2.427 | 2.530 | 1.765 | 2.901 | 1.304 | 1.276 | 1.285 | 2.959 | 4.298 | 4.682 |
4.00 | 2.400 | 2.428 | 2.529 | 1.765 | 2.895 | 1.305 | 1.274 | 1.284 | 2.959 | 4.305 | 4.682 |
4.96 | 2.392 | 2.427 | 2.529 | 1.765 | 2.890 | 1.306 | 1.273 | 1.284 | 2.958 | 4.313 | 4.681 |
6.00 | 2.384 | 2.427 | 2.527 | 1.766 | 2.884 | 1.307 | 1.272 | 1.284 | 2.958 | 4.319 | 4.682 |
7.00 | 2.376 | 2.427 | 2.527 | 1.766 | 2.880 | 1.307 | 1.272 | 1.284 | 2.958 | 4.328 | 4.681 |
Δ | −0.060 | −0.002 | −0.005 | 0.002 | −0.036 | 0.006 | −0.008 | −0.003 | −0.008 | 0.054 | −0.005 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colmenero, F. Revealing Rutherfordine Mineral as an Auxetic Material. Appl. Sci. 2018, 8, 2281. https://doi.org/10.3390/app8112281
Colmenero F. Revealing Rutherfordine Mineral as an Auxetic Material. Applied Sciences. 2018; 8(11):2281. https://doi.org/10.3390/app8112281
Chicago/Turabian StyleColmenero, Francisco. 2018. "Revealing Rutherfordine Mineral as an Auxetic Material" Applied Sciences 8, no. 11: 2281. https://doi.org/10.3390/app8112281
APA StyleColmenero, F. (2018). Revealing Rutherfordine Mineral as an Auxetic Material. Applied Sciences, 8(11), 2281. https://doi.org/10.3390/app8112281