A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks
Abstract
:Featured Application
Abstract
1. Introduction
2. Damage Identification Approach
2.1. Damage Identification Index
2.2. Damage Identification Method
3. Damage Identification Process
4. Case Study: Damage Identification of a Jacket Platform
4.1. Finite Element Modeling
4.2. Damage Scenario
4.3. Damage Identification Using Different Training Samples
4.4. Effect of Damage Identification for Damaged Elements at Different Locations
5. Conclusion
- (1)
- A neural-network-based method for quantitative identification of structural damage is proposed. Through the case study of an offshore jacket platform, it is proven that this method can effectively identify the structural damages of different components.
- (2)
- New damage indices are proposed combining the squared frequency and the sum of the first β partial modal results. These new damage indices use the lowest six modal results of the structure as inputs, and such combination indices can reduce the difficulty of handling large quantities of measurement data typical of engineering structures.
- (3)
- The size of training samples is important during training of the artificial neural networks, and the sample size should be increased until the prediction accuracy is satisfactory. Generally, the mean squared error of the test samples tends to decrease with the increase of the training sample size.
- (4)
- When the damaged components are located in an area close to the measurement points and sensor positions, the accuracy of the damage identification method is high. When the damaged components are farther away from the measurement points, the identification prediction error tends to increase and may exceed 16%. Four test samples with different damages are considered, and there are certain variabilities in the prediction.
6. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, B.; Liu, Y.; Ma, H.; Tang, G. Discrete feedforward and feedback optimal tracking control for offshore steel jacket platforms. Ocean Eng. 2014, 91, 371–378. [Google Scholar] [CrossRef]
- Mohamed, A.R. Structural control of a steel jacket platform. Struct. Eng. Mech. 1996, 4, 125–138. [Google Scholar]
- Park, M.S.; Koo, W.K.; Kawano, K. Dynamic response analysis of an offshore platform due to seismic motions. Eng. Struct. 2011, 33, 1607–1616. [Google Scholar] [CrossRef]
- Kazemy, A. Robust mixed H∞/passive vibration control of offshore steel jacket platforms with structured uncertainty. Ocean Eng. 2017, 139, 95–102. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Han, J. Damage detection of an offshore jacket structure from partial modal information: numerical study. In Proceedings of the Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium, Dalian, China, 17–21 September 2006; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 2006. [Google Scholar]
- Yang, Y.; Ying, X.; Guo, B.; He, Z. Collapse safety reserve of jacket offshore platforms subjected to rare intense earthquakes. Ocean Eng. 2017, 131, 36–47. [Google Scholar] [CrossRef]
- Pérez, J.E.R.; Rodríguez, R.; Vázquez-Hernández, A.O. Damage detection in offshore jacket platforms with limited modal information using the Damage Submatrices Method. Mar. Struct. 2017, 55, 78–103. [Google Scholar] [CrossRef]
- El-Reedy, M.A. Offshore Structures: Design, Construction and Maintenance; Gulf Professional Publishing: Houston, TX, USA, 2012. [Google Scholar]
- Asgarian, B.; Aghaeidoost, V.; Shokrgozar, H.R. Damage detection of jacket type offshore platforms using rate of signal energy using wavelet packet transform. Mar. Struct. 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Kenley, R.M.; Dodds, C.J. West Sole WE Platform: Detection of Damage by Structural Response Measurements. In Proceedings of the Offshore Technology Conference 1980, Houston, TX, USA, 5–8 May 1980. [Google Scholar]
- Roitman, N.; Viero, P.F. Identification of offshore platforms structural damage using modal analysis techniques. Mech. Syst. Signal Process. 1992, 6, 287–295. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Hu, S.J. Using incomplete modal data for damage detection in offshore structures. Ocean Eng. 2008, 35, 1793–1799. [Google Scholar] [CrossRef]
- Weber, B.; Paultre, P.; Proulx, J. Consistent regularization of nonlinear model updating for damage identification. Mech. Syst. Signal Process. 2009, 23, 1965–1985. [Google Scholar] [CrossRef]
- Link, M.; Weiland, M. Damage identification by multi-model updating in the modal and in the time domain. Mech. Syst. Signal Process. 2009, 23, 1734–1746. [Google Scholar] [CrossRef]
- Reynders, E.; Teughels, A.; Roeck, G.D. Finite element model updating and structural damage identification using OMAX data. Mech. Syst. Signal Process. 2010, 24, 1306–1323. [Google Scholar] [CrossRef]
- Xia, Y.; Weng, S.; Xu, Y. A substructuring method for model updating and damage identification. Procedia Eng. 2011, 14, 3095–3103. [Google Scholar] [CrossRef]
- Fang, S.; Perera, R. Damage identification by response surface based model updating using D.-optimal design. Mech. Syst. Signal Process. 2011, 25, 717–733. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, Y.; Chen, J.; Song, G. Probability-based damage detection using model updating with efficient uncertainty propagation. Mech. Syst. Signal Process. 2015, 60–61, 958–970. [Google Scholar] [CrossRef]
- Simoen, E.; Roeck, G.D.; Lombaert, G. Dealing with uncertainty in model updating for damage assessment: A. review. Mech. Syst. Signal Process. 2015, 56–57, 123–149. [Google Scholar] [CrossRef] [Green Version]
- Waeytens, J.; Rosić, B.; Charbonnel, P.E.; Merliot, E.; Siegert, D.; Chapeleau, X.; Vidal, R.; Corvec, V.L.; Cottineau, L.M. Model updating techniques for damage detection in concrete beam using optical fiber strain measurement device. Eng. Struct. 2016, 129, 2–10. [Google Scholar] [CrossRef]
- Altunışık, A.C.; Okur, F.Y.; Kahya, V. Automated model updating of multiple cracked cantilever beams for damage detection. J. Constr. Steel Res. 2017, 138, 499–512. [Google Scholar] [CrossRef]
- Pedram, M.; Esfandiari, A.; Khedmati, M.R. Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation. J. Sound Vib. 2017, 397, 51–76. [Google Scholar] [CrossRef]
- Nozari, A.; Behmanesh, I.; Yousefianmoghadam, S.; Moaveni, B.; Stavridis, A. Effects of variability in ambient vibration data on model updating and damage identification of a 10-story building. Eng. Struct. 2017, 151, 540–553. [Google Scholar] [CrossRef]
- Lu, Z.R.; Lin, X.X.; Chen, Y.M.; Huang, M. Hybrid sensitivity matrix for damage identification in axially functionally graded beams. Appl. Math. Model. 2017, 41, 604–617. [Google Scholar] [CrossRef]
- Behmanesh, I.; Moaveni, B.; Papadimitriou, C. Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling errors. Eng. Struct. 2017, 131, 542–552. [Google Scholar] [CrossRef]
- Haeri, M.H.; Lotfi, A.; Dolatshahi, K.M.; Golafshani, A.A. Inverse vibration technique for structural health monitoring of offshore jacket platforms. Appl. Ocean Res. 2017, 62, 181–198. [Google Scholar] [CrossRef]
- Mangalathu, S.; Jeon, J.S.; DesRoches, R.; Padgett, J. Application of Bayesian Methods to Probabilistic Seismic Demand Analyses of Concrete Box-Girder Bridges. In Proceedings of the Geotechnical and Structural Engineering Congress 2016, Phoenix, AZ, USA, 14–17 February 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 1367–1379. [Google Scholar]
- Mangalathu, S.; Jeon, J.S. Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques. Eng. Struct. 2018, 160, 85–94. [Google Scholar] [CrossRef]
- Ni, P.; Mangalathu, S. Fragility analysis of gray iron pipelines subjected to tunneling induced ground settlement. Tunn. Undergr. Space Technol. 2018, 76, 133–144. [Google Scholar] [CrossRef]
- Krishnan, N.M.A.; Mangalathu, S.; Smedskjaer, M.M.; Tandia, A.; Burton, H.; Bauchy, M. Predicting the dissolution kinetics of silicate glasses using machine learning. J. Non-Cryst. Solids 2018, 487, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.M.; Zhao, X.X.; Guo, J.H.; Yuan, X.F.; Dong, S.L.; Xiong, Z.X. Model updating of suspended-dome using artificial neural networks. Adv. Struct. Eng. 2017, 20, 1727–1743. [Google Scholar] [CrossRef]
- Mangalathu, S.; Heo, G.; Jeon, J.-S. Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Eng. Struct. 2018, 162, 166–176. [Google Scholar] [CrossRef]
- Wang, Z.; Pedroni, N.; Zentner, I.; Zio, E. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Eng. Struct. 2018, 162, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Admas, R.D.; Walton, D.; Flitcroft, J.E.; Short, D. Vibration testing as a nondestructive test tool for composite materials. Conf. Compos. Reliab. 1975, 159–175. [Google Scholar] [CrossRef]
- Tsou, P.; Shen, M. Structural damage detection and identification using neural networks. AIAA J. 1994, 32, 176–183. [Google Scholar] [CrossRef]
- Sahin, M.; Shenoi, R.A. Quantification and Localization of Damage in Beam-like Structures by using Artificial Neural Networks with Experimental. Eng. Struct. 2003, 25, 1785–1802. [Google Scholar] [CrossRef]
- Lee, J.J.; Lee, J.W.; Yi, J.H. Neural Networks-based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models. J. Sound Vib. 2005, 280, 555–578. [Google Scholar] [CrossRef]
- Diao, Y.; Li, H. Study on damage diagnosis of offshore platform by artificial neural networks. Shock Vib. 2006, 25, 98–103. [Google Scholar]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Ni, P. Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 2018, 172, 13–28. [Google Scholar] [CrossRef]
- Tan, Z.X.; Thambiratnam, D.P.; Chan, T.H.T.; Razak, H.A. Detecting damage in steel beams using modal strain energy based damage index and Artificial Neural Network. Eng. Fail. Anal. 2017, 79, 253–262. [Google Scholar] [CrossRef]
- Ye, L.; Su, Z.; Yang, C.; He, Z.; Wang, X. Hierarchical development of training database for artificial neural network-based damage identification. Compos. Struct. 2006, 76, 224–233. [Google Scholar] [CrossRef]
- Padil, K.H.; Bakhary, N.; Hao, H. The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection. Mech. Syst. Signal Process. 2017, 83, 194–209. [Google Scholar] [CrossRef]
- Koç, A.A.; Yeniay, Ö. A comparative study of artificial neural networks and logistic regression for classification of marketing campaign results. Math. Comput. Appl. 2013, 18, 392–398. [Google Scholar] [CrossRef]
- Payán-Serrano, O.; Bojórquez, E.; Bojórquez, J.; Chávez, R.; Reyes-Salazar, A.; Barraza, M.; López-Barraza, A.; Rodríguez-Lozoya, H.; Corona, E. Prediction of maximum story drift of mdof structures under simulated wind loads using artificial neural networks. Appl. Sci. 2017, 7, 563. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Brijs, T.; Ahmad, N.; Pirdavani, A.; Shen, Y.; Basheer, M.A. Road safety risk evaluation using gis-based data envelopment analysis—artificial neural networks approach. Appl. Sci. 2017, 7, 886. [Google Scholar] [CrossRef]
- Saleem, W.; Zain-ul-abdein, M.; Ijaz, H.; Salmeen Bin Mahfouz, A.; Ahmed, A.; Asad, M.; Mabrouki, T. Computational analysis and artificial neural network optimization of dry turning parameters—AA2024-T351. Appl. Sci. 2017, 7, 642. [Google Scholar] [CrossRef]
- Palacz, M.; Krawczuk, M. Vibration parameters for damage detection in structures. J. Sound Vib. 2002, 249, 999–1010. [Google Scholar] [CrossRef]
- Radzienski, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters. Mech. Syst. Signal Process. 2011, 25, 2169–2190. [Google Scholar] [CrossRef]
- Kriesel, D. Neural Networks. 2005. Available online: http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf (accessed on 20 September 2018).
- Guo, J.M.; Yuan, X.F.; Xiong, Z.X.; Dong, S.L. Force finding of suspended-domes using back propagation (bp) algorithm. Adv. Steel Constr. 2016, 12, 17–31. [Google Scholar]
- Moll, H.G.; Vorpahl, F.; Busmann, H.G. Dynamics of Support Structures for Offshore Wind Turbines in Fully-coupled Simulations—Influence of Water Added Mass on Jacket Mode Shapes, Natural Frequencies and Loads. In Proceedings of the European Wind Energy Conference and Exhibition, Warsaw, Poland, 20–23 April 2010; Curran: Red Hook, NY, USA, 2010. [Google Scholar]
Element No. | Element Name | Elastic Modulus (Pa) | Poisson’s Ratio | Density (kg/m3) | Section Type | Dimension (mm) | Finite Element Type |
---|---|---|---|---|---|---|---|
E1 | Dominant tube above the soil | 2.1 × 10−11 | 0.3 | 7850 | Circular steel tube | Φ1200 × 50 | PIPE59 |
E2 | Dominant Tube beneath the soil | 2.1 × 10−11 | 0.3 | 7850 | Φ1200 × 50 | PIPE20 | |
E3 | Main pipe on deck section | 2.1 × 10−11 | 0.3 | 7850 | Φ780 × 38 | PIPE59 | |
E4 | Horizontal support | 2.1 × 10−11 | 0.3 | 7850 | Φ780 × 38 | PIPE59 | |
E5 | Diagonal brace | 2.1 × 10−11 | 0.3 | 7850 | Φ508 × 25.5 | PIPE59 | |
E6 | Deck beam | 2.1 × 10−11 | 0.3 | 7850 | Square steel | Φ400 × 400 | BEAM4 |
Sample No. | Input Data (RSF and ΔØ) and Output Data (ΔE) |
---|---|
1 | RSF = [0.02660, 0.02784, 0.00787, 0.0314, 0.03357, 0.00413] ΔØ = [−2.1006, −2.5961, −2.7346, −0.1784, −0.9464, −1.4298, −2.9443, −3.3809, −3.4088, −1.0199, −1.7558, −2.0844] ΔE = [0.7266, 0.9215, 0.659, 0.8071, 0.8876, 0.8537, 0.5484, 0.7897] |
… … … … | |
10,000 | RSF = [0.03650, 0.02784, 0.00598, 0.02147, 0.02812, 0.00375] ΔØ = [0.014, 0.0355, −0.0049, 1.2194, 1.0664, 0.8378, −1.2095, −1.0162, −0.8293, 0.0041, 0.0189, 0.0062] ΔE = [0.8992, 0.5597, 0.718, 0.6769, 0.9547, 0.8496, 0.9812, 0.7855] |
… … … … | |
20,000 | RSF = [0.06095, 0.02130, 0.01048, 0.04082, 0.04540, 0.00605] ΔØ = [0.0062, 0.0168, −0.0519, 1.258, 1.107, 0.8558, −1.2725, −1.0879, −0.9145, −0.0132, 0.0158, −0.0181] ΔE = [0.5501, 0.5125, 0.8262, 0.8889, 0.7276, 0.9428, 0.5593, 0.7297] |
Test Sample | Member Unit and Corresponding Elastic Modulus | |||||||
---|---|---|---|---|---|---|---|---|
E1,2 | E2,3 | E7,8 | E8,9 | E13,14 | E14,15 | E19,20 | E20,21 | |
D1 | 0.9236 | 0.7286 | 0.694 | 0.8462 | 0.7688 | 0.809 | 0.9239 | 0.5017 |
D2 | 0.7345 | 0.6601 | 0.8964 | 0.7911 | 0.8476 | 0.535 | 0.6736 | 0.5562 |
D3 | 0.7649 | 0.9947 | 0.8158 | 0.5754 | 0.886 | 0.7773 | 0.7388 | 0.9021 |
D4 | 0.9182 | 0.5591 | 0.8795 | 0.8568 | 0.7954 | 0.5317 | 0.6839 | 0.511 |
Area No. | Element No. | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
A | E1,2 | E2,3 | E7,8 | E8,9 | E13,14 | E14,15 | E19,20 | E20,21 |
B | E2,3 | E3,4 | E8,9 | E9,10 | E14,15 | E15,16 | E20,21 | E21,22 |
C | E3,4 | E4,5 | E9,10 | E10,11 | E15,16 | E16,17 | E21,22 | E22,23 |
D | E4,5 | E5,6 | E10,11 | E11,12 | E16,17 | E17,18 | E22,23 | E23,24 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wu, J.; Guo, J.; Jiang, Z. A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks. Appl. Sci. 2018, 8, 2173. https://doi.org/10.3390/app8112173
Guo J, Wu J, Guo J, Jiang Z. A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks. Applied Sciences. 2018; 8(11):2173. https://doi.org/10.3390/app8112173
Chicago/Turabian StyleGuo, Jiamin, Jiongliang Wu, Junhua Guo, and Zhiyu Jiang. 2018. "A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks" Applied Sciences 8, no. 11: 2173. https://doi.org/10.3390/app8112173
APA StyleGuo, J., Wu, J., Guo, J., & Jiang, Z. (2018). A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks. Applied Sciences, 8(11), 2173. https://doi.org/10.3390/app8112173