Laser Welding under Vacuum: A Review
Abstract
:1. Introduction
2. The Research Status of Laser Welding under Vacuum
3. The Equipment of Laser Welding under Vacuum
4. Fundamental Phenomena during Laser Welding under Vacuum
4.1. The Influence of Ambient Pressure on Penetration Depth and Weld Geometry
4.2. The Influence of Ambient Pressure on Plasma Plume
4.3. The Influence of Ambient Pressure on Molten Pool and Keyhole Behaviors
5. Applications of Laser Welding under Vacuum
6. Prospects of Laser Welding under Vacuum
- Significant increase (More than two times) of the welding depth;
- Parallel-sided seams with reduced nail head;
- Increased process stability due to greatly reduced and stable plasma plume;
- Reduction of workpiece contamination by spatter and vaporization;
- Higher-quality, pore-free weld seams;
- Low operating costs due to efficient solid-state laser;
- Welding process without inert gas;
- Lower vacuum level and simpler device compared with electron beam welding.
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kou, S. Welding Metallurgy; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Lancaster, J.F. Metallurgy of Welding; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Katayama, S. Handbook of Laser Welding Technologies; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Allmen, M.V.; Blatter, A. Laser-Beam Interactions with Materials: Physical Principles and Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Duley, W.W. Laser Welding; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Kacar, I.; Ozturk, F.; Yilbas, B.S. A review of and current state-of-the-art in laser beam welding in the automotive industry. Laser Eng. 2016, 33, 327–338. [Google Scholar]
- Cao, X.; Jahazi, M.; Immarigeon, J.P.; Wallace, W. A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol. 2006, 171, 188–204. [Google Scholar] [CrossRef]
- Martukanitz, R.P. A critical review of laser beam welding. In Lasers and Applications in Science and Engineering, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), San Jose, CA, USA, 22–27 January 2005; Schriempf, J.T., Ed.; SPIE: Bellingham, WA, USA, 2005; Volume 5706, pp. 11–24. [Google Scholar]
- Cao, X.; Wallace, W.; Poon, C.; Immarigeon, J.P. Research and Progress in Laser Welding of Wrought Aluminum Alloys. I. Laser Welding Processes. Mater. Manuf. Process. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Dilthey, U.; Fuest, D.; Scheller, W. Laser welding with filler wire. Opt. Quantum Electron. 1995, 27, 1181–1191. [Google Scholar]
- Salminen, A.S.; Kujanpää, V.P. Effect of wire feed position on laser welding with filler wire. J. Laser Appl. 2003, 15, 2–10. [Google Scholar] [CrossRef]
- Salminen, A.S. Effects of filler wire feed on the efficiency of laser welding. In LAMP 2002: International Congress on Laser Advanced Materials Processing, Proceedings of SPIE—The International Society for Optical Engineering, Osaka, Japan, 27–31 May 2002; SPIE: Bellingham, WA, USA, 2003; pp. 263–268. [Google Scholar]
- Rasmussen, D.; Dubourg, L. Hybrid laser-GMAW welding of aluminum alloys: A review. In Proceedings of the 7th International Conference on Trends in Welding Research, Pine Mountain, Atlanta, GA, USA, 16–20 May 2005; pp. 133–142. [Google Scholar]
- Bagger, C.; Olsen, F.O. Review of laser hybrid welding. J. Laser Appl. 2005, 17, 2–14. [Google Scholar] [CrossRef]
- Lu, J.; Kujanpää, V. Review study on remote laser welding with fiber lasers. J. Laser Appl. 2013, 25, 052008. [Google Scholar] [CrossRef]
- Reinhart, G.; Munzert, U.; Vogl, W. A programming system for robot-based remote-laser-welding with conventional optics. CIRP Ann. Manuf. Technol. 2008, 57, 37–40. [Google Scholar] [CrossRef]
- Hatwig, J.; Minnerup, P.; Zaeh, M.F.; Reinhart, G. An automated path planning system for a robot with a laser scanner for remote laser cutting and welding. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation (ICMA), Chengdu, China, 5–8 August 2012; pp. 1323–1328. [Google Scholar]
- Hao, K.; Li, G.; Gao, M.; Zeng, X. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 2015, 225, 77–83. [Google Scholar] [CrossRef]
- Arata, Y.; Abe, N.; Oda, T. Fundamental Phenomena in High Power CO_2 Laser (Report II): Vacuum Laser Welding (Welding Physics, Process & Instrument). Trans. JWRI 1985, 14, 217–222. [Google Scholar]
- Katayama, S.; Kobayashi, Y.; Mizutani, M.; Matsunawa, A. Effect of vacuum on penetration and defects in laser welding. J. Laser Appl. 2001, 13, 187–192. [Google Scholar] [CrossRef]
- Katayama, S.; Yohei, A.; Mizutani, M.; Kawahito, Y. Development of Deep Penetration Welding Technology with High Brightness Laser under Vacuum. Phys. Procedia 2011, 12, 75–80. [Google Scholar] [CrossRef]
- Verwaerde, A.; Fabbro, R.; Deshors, G. Experimental study of continuous CO2 laser welding at subatmospheric pressures. J. Appl. Phys. 1995, 78, 2981–2984. [Google Scholar] [CrossRef]
- Fabbro, R.; Hirano, K.; Pang, S. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure. J. Laser Appl. 2016, 28, 022427. [Google Scholar] [CrossRef]
- Bachmann, M.; Gumenyuk, A.; Rethmeier, M. Welding with High-power Lasers: Trends and Developments. Phys. Procedia 2016, 83, 15–25. [Google Scholar] [CrossRef]
- Nielsen, S.E. High Power Laser Hybrid Welding—Challenges and Perspectives. Phys. Procedia 2015, 78, 24–34. [Google Scholar] [CrossRef]
- Avilov, V.V.; Gumenyuk, A.; Lammers, M.; Rethmeier, M. PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci. Technol. Weld. Join. 2012, 17, 128–133. [Google Scholar] [CrossRef]
- Kawahito, Y.; Mizutani, M.; Katayama, S. High quality welding of stainless steel with 10 kW high power fibre laser. Sci. Technol. Weld. Join. 2009, 14, 288–294. [Google Scholar] [CrossRef]
- Zhang, X.; Ashida, E.; Katayama, S.; Mizutani, M. Deep penetration welding of thick section steels with 10 kW fiber laser. Q. J. Jpn. Weld. Soc. 2009, 27, 64–68. [Google Scholar] [CrossRef]
- Reisgen, U.; Olschok, S.; Longerich, S. Laser beam welding in vacuum—A comparison with electron beam welding. Weld. Cut. 2010, 9, 224–230. [Google Scholar]
- Reisgen, U.; Olschok, S.; Jakobs, S. Laser beam welding in vacuum of thick plate structural steel. In Proceedings of the 32th ICALEO, Orlando, FL, USA, 6–10 October 2013; pp. 341–360. [Google Scholar]
- Reisgen, U.; Olschok, S.; Jakobs, S.; Turner, C. Laser beam welding under vacuum of high grade materials. Weld. World 2016, 60, 1–11. [Google Scholar] [CrossRef]
- Reisgen, U.; Olschok, S.; Jakobs, S.; Turner, C. Sound Welding of Copper: Laser Beam Welding in Vacuum. Phys. Procedia 2016, 83, 447–454. [Google Scholar] [CrossRef]
- Börner, C.; Dilger, K.; Rominger, V.; Harrer, T.; Krüssel, T.; Löwer, T. Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser. In Proceedings of the 30th ICALEO, Orlando, FL, USA, 23–27 October 2011; pp. 23–27. [Google Scholar]
- Börner, C.; Krussel, T.; Dilger, K. Process characteristics of laser beam welding at reduced ambient pressure. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 2–7 February 2013; p. 86030M. [Google Scholar]
- Cai, C.; Peng, G.C.; Li, L.Q.; Chen, Y.B.; Qiao, L. Comparative study on laser welding characteristics of aluminium alloy under atmospheric and subatmospheric pressures. Sci. Technol. Weld. Join. 2014, 19, 547–553. [Google Scholar] [CrossRef]
- Jiang, M.; Tao, W.; Wang, S.; Li, L.; Chen, Y. Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding. Vacuum 2017, 138, 70–79. [Google Scholar] [CrossRef]
- Sokolov, M.; Salminen, A.; Katayama, S.; Kawahito, Y. Reduced Pressure Laser Welding of Thick Section Structural Steel. J. Mater. Process. Technol. 2015, 219, 278–285. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, X.; Lu, F.; Chen, Q. Effect of subatmospheric pressure on plasma plume in fiber laser welding. J. Mater. Process. Technol. 2015, 215, 219–224. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, X.; Deng, S.; Lu, F.; Chen, Q.; Cui, H. Dynamic coupling between molten pool and metallic vapor ejection for fiber laser welding under subatmospheric pressure. J. Mater. Process. Technol. 2016, 229, 431–438. [Google Scholar] [CrossRef]
- Engelhardt, T.; Heider, A.; Weber, R.; Graf, T. Time-resolved X-ray analysis of the keyhole behavior during laser welding of steel and aluminum at reduced ambient pressure. In Proceedings of the 34th ICALEO, Atlanta, GA, USA, 18–22 October 2015; pp. 250–256. [Google Scholar]
- Elmer, J.W.; Vaja, J.; Carlton, H.D. The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel. Weld. J. 2016, 95, 419S–430S. [Google Scholar]
- Heinrici, A.; Bjelajac, G.; Jonkers, J.; Jakobs, S.; Olscho, S.; Reisgen, U. Vacuum fiber-fiber coupler. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 28 January–2 February 2017; p. 100970F. [Google Scholar]
- Katayama, S.; Ido, R.; Nishimoto, K.; Mizutani, M.; Kawahito, Y. Full penetration welding of thick high tensile strength steel plate with high power disk laser in low vacuum. Q. J. Jpn. Weld. Soc. 2015, 33, 262–270. [Google Scholar] [CrossRef]
- Youhei, A.; Yousuke, K.; Hiroshi, N.; Koji, N.; Masami, M.; Seiji, K. Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser. Sci. Technol. Weld. Join. 2014, 19, 324–332. [Google Scholar] [CrossRef]
- Focus. Available online: http://www.focus-e-welding.de/Laser-Beam.html (accessed on 10 April 2017).
- Welding and Joining Institute. Available online: http://www.isf.rwth-aachen.de/cms/isf/Forschung/Forschungsbereiche/Strahlschweissen/~ldah/LaserstLaserstrahlsch-unter-Vakuum/lidx/1/ (accessed on 10 April 2017).
- Ptr-ebeam. Available online: http://www.ptr-ebeam.com/en/ptr-machines/2016-04-15-06-51-39/lasvac-pl-01.html (accessed on 10 April 2017).
- Jakobs, S.; Reisgen, U. Laser Beam Welding under reduced pressure—Range of possible applications for thick-plates. Stahlbau 2015, 84, 635–642. [Google Scholar] [CrossRef]
- Abe, Y.; Mizutani, M.; Kawahito, Y.; Katayama, S. Deep penetration welding with high power laser under vacuum. Trans. JWRI 2011, 103, 15–19. [Google Scholar]
- Reisgen, U.; Olschok, S.; Turner, C. Welding of thick plate copper with laser beam welding under vacuum. J. Laser Appl. 2017, 29, 022402. [Google Scholar] [CrossRef]
- Kim, K.R.; Farson, D.F. CO2 laser—Plume interaction in materials processing. J. Appl. Phys. 2001, 89, 681–688. [Google Scholar] [CrossRef]
- Beck, M.; Berger, P.; Hugel, H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers. J. Phys. D Appl. Phys. 1995, 28, 2430. [Google Scholar] [CrossRef]
- Shcheglov, P. Study of Vapour-Plasma Plume during High Power Fiber Laser Beam Influence on Metals; Bundesanstalt für Materialforschung und-Prüfung (BAM): Berlin, Germany, 2012.
- Kawahito, Y.; Kinoshita, K.; Matsumoto, N.; Mizutani, M.; Katayama, S. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser. Sci. Technol. Weld. Join. 2008, 13, 749–753. [Google Scholar] [CrossRef]
- Kawahito, Y.; Kinoshita, K.; Matsumoto, N.; Katayama, S. Visualization of refraction and attenuation of near-infrared laser beam due to laser-induced plume. J. Laser Appl. 2009, 21, 96–101. [Google Scholar] [CrossRef]
- Shcheglov, P.Y.; Uspenskiy, S.A.; Gumenyuk, A.V.; Petrovskiy, V.N.; Rethmeier, M.; Yermachenko, V.M. Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys. Lett. 2011, 8, 475–480. [Google Scholar] [CrossRef]
- Pang, S.; Hirano, K.; Fabbro, R.; Jiang, T. Explanation of penetration depth variation during laser welding under variable ambient pressure. J. Laser Appl. 2015, 27, 022007. [Google Scholar] [CrossRef]
- Pang, S.; Chen, X.; Zhou, J.; Shao, X.; Wang, C. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt. Laser Eng. 2015, 74, 47–58. [Google Scholar] [CrossRef]
- Reisgen, U.; Olschok, S.; Jakobs, S.; Mücke, M. Welding with the laser beam in vacuum. Laser Tech. J. 2015, 12, 42–46. [Google Scholar] [CrossRef]
- Welding and Joining Institute. Available online: http://www.isf.rwth-aachen.de/ (accessed on 10 April 2017).
- Pro-beam. Available online: http://www.pro-beam.com/en/capabilities/fabrication/laser-systems/?no_cache=1&sword_list%5B0%5D=vacuum (accessed on 10 April 2017).
- Laser Community. Available online: http://www.laser-community.com/en/low-pressure-solid-state-laser-welding-for-power-train-by-pro-beam-trumpf-ifs/ (accessed on 10 April 2017).
- Weglowski, M.S.; Blacha, S.; Phillips, A. Electron beam welding—Techniques and trends—Review. Vacuum 2016, 130, 72–92. [Google Scholar] [CrossRef]
- Letyagin, I.Y.; Trushnikov, D.N.; Belenkiy, V.Y. Benefits and Prospects of Laser Welding Application in Vacuum. KnE Mater. Sci. 2016, 1, 90–94. [Google Scholar] [CrossRef]
- Lawler, S.; Clark, D.; Punshon, C.; Bagshaw, N.; Disney, C.; Powers, J. Local vacuum electron beam welding for pressure vessel applications. Ironmak. Steelmak. 2015, 42, 722–726. [Google Scholar] [CrossRef]
- Schneider, A.; Gumenyuk, A.; Rethmeier, M. Mobile vacuum in pocket format. Laser Tech. J. 2015, 12, 43–46. [Google Scholar] [CrossRef]
- Schneider, A.; Gumenyuk, A.; Rethmeier, M. Mobile vacuum device for laser beam welding of thick materials. In Proceedings of the 3rd International Conference in Africa and Asia Welding and Failure Analysis of Engineering Materials, Luxor, Egypt, 2–5 November 2015. [Google Scholar]
- Reisgen, U.; Olschok, S.; Holtum, N.; Jakobs, S. Laser beam welding in mobile vacuum. In Proceedings of the Lasers in Manufacturing (LIM 2017), Munich, Germany, 26–29 January 2017. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Tao, W.; Chen, Y. Laser Welding under Vacuum: A Review. Appl. Sci. 2017, 7, 909. https://doi.org/10.3390/app7090909
Jiang M, Tao W, Chen Y. Laser Welding under Vacuum: A Review. Applied Sciences. 2017; 7(9):909. https://doi.org/10.3390/app7090909
Chicago/Turabian StyleJiang, Meng, Wang Tao, and Yanbin Chen. 2017. "Laser Welding under Vacuum: A Review" Applied Sciences 7, no. 9: 909. https://doi.org/10.3390/app7090909
APA StyleJiang, M., Tao, W., & Chen, Y. (2017). Laser Welding under Vacuum: A Review. Applied Sciences, 7(9), 909. https://doi.org/10.3390/app7090909