# Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

^{*}

## Abstract

**:**

_{11}) generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale-resolution imaging, sensing, quantum optics devices and even optical communication networks.

## 1. Introduction

_{11}) generation [121], graphene split-ring metasurface-assisted terahertz coherent perfect absorption [122], OAM beam generation using a nanophotonic dielectric metasurface array [123] and Bessel beam generation and OAM multicasting using dielectric metasurface array [124].

## 2. Plasmonic Metasurfaces

_{2}spacer are designed and fabricated using the electron-beam evaporation electron-beam lithography technique to realize anomalous reflections [81]; (3) metal H-shaped nano-antenna arrays are designed and fabricated using printed circuit boards to realize high efficiency conversion from propagating waves to surface waves in the microwave regime [82]; (4) metal nanorods are deposited on a glass substrate to generate a hologram [95]; (5) freestanding nanofabricated fishnet metasurfaces are designed and fabricated using the electron-beam lithography method to realize a broadband band pass filter [96]; (6) metal rectangular apertures are arranged in an array with rotational symmetry in metal film to generate OAM beams [98]; (7) metal nanorods are designed and fabricated on glass substrate with a standard electron-beam lithography and lift-off process to generate broadband OAM beams [99]; (8) metal split-ring resonators are designed and fabricated on glass substrate with a standard electron-beam lithography to enhance second harmonic generation [102]. All of these works are based on manipulating the plasmon responses of nano-resonators by altering the dimensions, directions and even arrangement of unit structures. Recently, we have also made some progresses in plasmonic metasurfaces on the basis of previous works.

#### 2.1. Metasurfaces-Based Broadband and Selective Generation of Orbital Angular Momentum Carrying Vector Beams [118,119]

**E**

_{in}= [1 i]

^{T}). We set the wavelength at 1550 nm to characterize the properties of the generated OAM-carrying vector beams. The employed metasurfaces have an orientation angle of α ($\mathsf{\varphi}$) = l$\mathsf{\varphi}$ + α

_{0}, where l varies from +3 to −3 and α

_{0}= 0. We use

**E**

_{1}and

**E**

_{2}to represent the electric field components along the directions of

**e**

_{1}($\mathsf{\varphi}$) and

**e**

_{2}($\mathsf{\varphi}$) in Figure 3b, respectively. The first row of Figure 4 shows the spatial phase distribution of

**E**

_{1}, indicating that output beams carry OAM with a charge number of l from +3 to −3. The second and third rows of Figure 4 show spatial power distributions (P

_{1}∝ |

**E**

_{1}|

^{2}, P

_{2}∝ |

**E**

_{2}|

^{2}) along the directions of

**e**

_{1}($\mathsf{\varphi}$) and

**e**

_{2}($\mathsf{\varphi}$), respectively. It is found that the power component P

_{1}is much larger than P

_{2}. The extinction ratio (ER), defined by 10 × log

_{10}(P

_{1}/P

_{2}), exceeds 20 dB. Hence, the electric field component

**E**

_{2}along the direction of

**e**

_{2}($\mathsf{\varphi}$) can be ignored. The fourth and fifth rows of Figure 4 show spatial power distributions (P

_{x}, P

_{y}) along x and y axes, respectively. The alternative bright and dark power distribution implies that the polarization state rotates with the azimuthal angle $\mathsf{\varphi}$. The sixth row of Figure 4 shows the calculated spatial polarization distribution, implying the generation of vector beams with a polarization order of l from +3 to −3. The obtained results shown in Figure 4 confirm the successful generation of OAM-carrying vector beams using metal-assisted metasurfaces.

_{0}(l = 1, 2, 3) are considered. Left circularly-polarized light is adopted as the input excitation source. We use ER and purity to characterize the quality of the generated OAM-carrying vector beams. Figure 5a plots ER as a function of wavelength. One can clearly see the high-quality broadband generation of OAM-carrying vector beams ranging from 1000–2500 nm, i.e., from near-infrared to mid-infrared. For l = 1 and 2, the ER is kept above 20 dB over a 1500-nm bandwidth (1000–2500 nm). For l = 3, ER > 16 dB over a bandwidth of 1500 nm (1000–2500 nm) and ER > 20 dB over a bandwidth of 800 nm (1000–1800 nm) are achieved. Shown in Figure 5b is the wavelength-dependent purity for the OAM-carrying vector beam (l = 3), which is larger than 0.85 over a bandwidth of 1500 nm (1000–2500 nm). The insets depict weight spectra as functions of OAM charge number and polarization order number at 1550 nm. High values of purity are achieved.

_{i}

_{0}of the rectangular aperture. Figure 7b shows the extinction ratio as a function of the initial orientation angle α

_{20}of rectangular apertures in the second ring. The extinction ratio is kept above 20 dB when α

_{20}is varied from −1 to 7 degrees. The obtained range of initial orientation angle around eight degrees implies the good fabrication tolerance of the designed metasurfaces. We use

**E**

_{1i}and

**E**

_{2i}to denote the electric field components on the directions of

**e**

_{1i}($\mathsf{\varphi}$) and

**e**

_{2i}($\mathsf{\varphi}$) (similar to

**e**

_{1}($\mathsf{\varphi}$) and

**e**

_{2}($\mathsf{\varphi}$) in Figure 3b), respectively. We calculate the phase of

**E**

_{1i}and the power components on directions of

**e**

_{1i}($\mathsf{\varphi}$),

**e**

_{2i}($\mathsf{\varphi}$), x and y axes, which are represented by P

_{1}, P

_{2}, P

_{x}and P

_{y}, respectively. The spatially-variant polarization state of the OAM-carrying vector beams is also calculated. These results are shown in Figure 7c. Clearly, the power components on the direction of

**e**

_{1i}($\mathsf{\varphi}$) are much larger than those on the direction of

**e**

_{2i}($\mathsf{\varphi}$). The phase distributions in Figure 7c indicate that the electric field component

**E**

_{1i}carries OAM with a charge number of m = i (i = 1, 2, 3). The spatial distribution of P

_{x}, P

_{y}and the polarization state confirm that the OAM-carrying vector beams have a polarization order of l = i (i = 1, 2, 3).

#### 2.2. N-Fold OAM Multicasting Using V-Shaped Antenna Array [120]

_{i}

_{−1}, l

_{i}, l

_{i}

_{+1}, ...) are distributed to N end users (..., User

_{i}

_{−1}, User

_{i}, User

_{i}

_{+1}, ...), respectively. For each end user, an inverse spiral phase pattern is used to remove the spiral phase front of the desired OAM beam, leading to a bright spot at the center, which can be separated from other OAM beams by spatial filtering.

#### 2.3. Metasurface on Conventional Optical Fiber Facet for Linearly-Polarized Mode Generation [121]

_{11}mode generation using the designed metasurface on the facet of G.652 SMF. The insert displays the details and working principle of a metal rectangle resonator: the polarization of incident light is polarized along x, which can be decomposed into two perpendicular components corresponding to the long and short edge of the resonator, respectively; the transmission amplitudes of the response for a resonator in both components are almost the same, while the relative phase retardation is around π, where the linear polarization conversion occurs, resulting in a y-polarized transmitted light. The finite-difference time-domain (FDTD) method is also used to simulate the amplitude and phase response of the proposed metal rectangle resonator and its mirror image. The amplitude responses of y-polarized transmitted light of this resonator and its mirror image are almost the same, while their phase responses have a difference of π. Therefore, this feature can be used to generate a higher-order LP mode in the optical fiber. As depicted in Figure 13a, when an x-polarized Gaussian beam is irradiating on the metasurface on the facet of G.652 SMF at a wavelength of 632.8 nm, it can generate two kinds of transmitted beams with orthogonal polarization. The transmitted beam with x polarization called the normal refractive beam that is not influenced by the metasurface can generate the LP

_{01}mode. Meanwhile, the transmitted beam with y polarization called the abnormal refractive beam, which is influenced by the metasurface, can generate the LP

_{11}mode. Owing to the orthogonal polarization of the generated LP

_{01}and LP

_{11}modes, it is significantly convenient to separate these two modes in the optical fiber.

#### 2.4. Graphene Split-Ring Metasurface-Assisted Terahertz Coherent Perfect Absorption [122]

_{A}/I

_{B}= 1) on such a film is described by two special cases. When the phase difference $\mathsf{\varphi}$

_{A}− $\mathsf{\varphi}$

_{B}= 0, the CPA occurs. Thus, the graphene reaches the maximum absorption. When the phase difference $\mathsf{\varphi}$

_{A}− $\mathsf{\varphi}$

_{B}= π, Beam A and Beam B pass through one another without mutual disturbance. For split-ring graphene film with asymmetric two side (air, SiO

_{2}) conditions (Case 2), gate-tunable CPA is illustrated in Figure 14b, which is based on the electro-absorption effect of graphene. By electrically tuning the Fermi level of the graphene sheet, corresponding to chemical potential μ

_{c}

_{1}, the absorption of split-ring graphene reaches the maximum limit ∼50% for single incident beam. In this situation, when two coherent beams with equal intensities and phases are incident on the graphene from opposite sides, they will interfere with each other, leading to coherent absorption. When the chemical potential of graphene is changed to μ

_{c}

_{2}, the absorption of split-ring graphene is tuned to be weak. Thus, Beams A and B pass through each other nearly without loss. Hence, gate-tunable CPA is achievable.

_{c}= 0.3 eV and relaxation time τ = 0.5 ps are initially considered. The transmission (T), reflection (R) and absorption (A) of a split-ring graphene patterned with a periodical array are plotted in Figure 15a. When a single beam is illuminated on the patterned split-ring graphene film at normal incidence, one can see an obvious resonance around 2.91 THz. The strong resonance behaviors are expected to be electric dipolar mode. The excitation of electric dipolar mode results in the enhancement of absorption in the graphene sheet with a maximum of A = 49.92%. While the other parts of the incident beam energy are reflected or transmitted. As shown in Figure 15b, when two coherent beams with equal intensities and phases are incident on the graphene from opposite sides, they will interfere with each other, leading to coherent absorption of 99.69%. Figure 15c shows the normalized coherent absorption in the split-ring graphene as a function of the relative phase difference between two counter-propagating coherent beams. At the resonance frequency of 2.91 THz, the coherent absorption varies continuously from 99.7% to less than 2.1 × 10

^{−4}% as the phase difference changes from 0 to 0.969π, giving a modulation contrast of 56.7 dB.

_{2}) conditions (Figure 14b). The gate tunable operation relies on the electro-absorption effect of graphene. We consider the same split-ring graphene film on a SiO

_{2}substrate with a refractive index of n = 1.45, as shown in Figure 14b. Figure 16a,b presents simulated normalized absorption spectra for single-beam surface-normal illumination from the split-ring graphene side and the SiO

_{2}side, respectively, under different chemical potentials (Fermi energies). By electrically tuning the chemical potential of the split-ring graphene sheet, one can change the resonance center frequency. For illumination from the split-ring graphene side, the maximum absorption keeps ≥ 49.5% when the center frequency varies from 2.29 to 2.71 THz, as shown in Figure 16a. For illumination from the SiO

_{2}substrate side, the maximum absorption keeps ≥ 49.8%, as shown in Figure 16b.

_{c}= 0.24 eV. With the increase of the graphene chemical potential, it shows a blue shift of the resonance peak frequency. When the chemical potential of graphene is tuned to μ

_{c}= 0.35 eV, the absorption at 2.71 THz can still reach 95.6%. As the Fermi level of graphene can be electrically tuned, one can flexibly control the total absorption of the split-ring graphene. The split-ring graphene possesses the minimum absorption when the chemical potential is μ

_{c}= 0 eV, as shown in Figure 5b. For the center frequency at 2.5 THz, the maximum and minimum absorption are 97.5% (μ

_{c}= 2.9 eV) and 1.25% (μ

_{c}= 0 eV), giving a gate-tunable modulation contrast of 19 dB.

_{2}plasma etching technique to remove the undesired parts of graphene; (4) removing the PMMA layers.

## 3. Dielectric Metasurfaces

#### 3.1. OAM Beam Generation Using a Nanophotonic Dielectric Metasurface Array [123]

#### 3.2. Bessel Beam Generation and OAM Multicasting Using the Dielectric Metasurface Array [124]

## 4. Discussion

^{−19}m

^{3}. It is desired for the optical switches to be fast and energy saving. It is challenging for unit structures to satisfy the former two conditions. To solve the problem, one can alter the dimensions of the individual unit structures, or manipulate the near-field interactions between them. The nanomechanical device platform can provide one possible ideal solution [135,136]. There are several impressive works reported recently focusing on tunable and reconfigurable metasurfaces: (1) by combining the Fano resonant metal nanoparticles with a single layer of graphene, obviously electrically-controlled damping is observed in the Fano resonances in the near-infrared regime [137]; (2) by positioning a thin graphene sheet over asymmetric silicon nanobars, the transmission spectrum of the proposed device can be efficiently adjusted at the near-infrared frequencies [138]; (3) a metal nanomechanical metasurface is fabricated on the nanoscale thickness dielectric membrane, and the displacement of the metamolecules can be controlled by light illumination [139]; (4) using differential thermal expansion and Lorentz force, electrothermal tuning and magnetic modulation are achieved in a reconfigurable metal metasurface [140]; (5) using a vanadium dioxide metasurface lens, the amplitude spectrum and the focal intensity can be adjusted by changing the temperature in the terahertz regime [141]; (6) utilizing a heating-induced vanadium dioxide planar metamaterial, the device is able to be switched between capacitive and inductive responses [142]; (7) by combing the metal nanoantenna array with indium tin oxide, the phase and amplitude of the reflected light can be controlled at near-infrared wavelengths [143].

## 5. Conclusions

_{11}mode at the wavelength of 632.8 nm; (4) a kind of split-ring graphene is designed to realize CPA in the THz regime, achieving a tunable CPA covering from 99.7% to less than 2.1 × 10

^{−4}%; (5) a kind of dielectric metasurface is designed and fabricated on the SOI platform, realizing OAM beam generation; (6) a kind of dielectric metasurface is designed on the SOI platform at a wavelength of 1550 nm, achieving Bessel beam generation with high purity and multicasting from a single Gaussian beam to six OAM beams with a relatively low crosstalk of less than −14 dB. The designed and fabricated metasurfaces in these works have nano-scaled dimensions, and the generated beams carrying OAM have favorable qualities, which are promising for a compact and effective beam-steering system and space-division multiplexing (SDM)-assisted optical communication systems. In the future, the metasurface devices to generate optical beams carrying OAM can be combined with tunable and reconfigurable functions reported in [137,138,139,140,141,142,143], which makes robust spatial light manipulation possible and facilitates more interesting applications.

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett.
**2000**, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed] - Cai, W.; Shalaev, V. Optical metamaterials: Fundamentals and applications. Springer Sci. Bus. Media
**2010**, 63. [Google Scholar] [CrossRef] - Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics
**2014**, 8, 889–898. [Google Scholar] [CrossRef][Green Version] - Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Thompson, G.H.B. Unusual waveguide characteristics associated with the apparent negative permeability obtainable in ferrites. Nature
**1955**, 175, 1135–1136. [Google Scholar] [CrossRef] - Pendry, J.B. Focus issue: Negative refraction and metamaterials. Opt. Express
**2003**, 11. [Google Scholar] [CrossRef] - Agranovich, V.M.; Shen, Y.R.; Baughman, R.H.; Zakhidov, A.A. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B
**2004**, 69. [Google Scholar] [CrossRef] - Shalaev, V.M.; Cai, W.S.; Chettiar, U.K.; Yuan, H.K.; Sarychev, A.K.; Drachev, V.P.; Kildishev, A.V. Negative index of refraction in optical metamaterials. Opt. Lett.
**2005**, 30, 3356–3358. [Google Scholar] [CrossRef] [PubMed] - Zhang, S.; Fan, W.J.; Panoiu, N.C.; Malloy, K.J.; Osgood, R.M.; Brueck, S.R.J. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett.
**2005**, 95. [Google Scholar] [CrossRef] [PubMed] - Dolling, G.; Enkrich, C.; Wegener, M.; Soukoulis, C.M.; Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science
**2006**, 312, 892–894. [Google Scholar] [CrossRef] [PubMed] - Chettiar, U.K.; Kildishev, A.V.; Yuan, H.K.; Cai, W.S.; Xiao, S.M.; Drachev, V.P.; Shalaev, V.M. Dual-band negative index metamaterial: Double negative at 813 nm and single negative at 772 nm. Opt. Lett.
**2007**, 32, 1671–1673. [Google Scholar] [CrossRef] [PubMed] - Dolling, G.; Wegener, M.; Soukoulis, C.M.; Linden, S. Negative-index metamaterial at 780 nm wavelength. Opt. Lett.
**2007**, 32, 53–55. [Google Scholar] [CrossRef] [PubMed] - Klein, M.W.; Enkrich, C.; Wegener, M.; Linden, S. Second-harmonic generation from magnetic metamaterials. Science
**2006**, 313, 502–504. [Google Scholar] [CrossRef] [PubMed] - Klein, M.W.; Wegener, M.; Feth, N.; Linden, S. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express
**2007**, 15, 5238–5247. [Google Scholar] [CrossRef] [PubMed] - Popov, A.K.; Shalaev, V.M. Negative-index metamaterials: Second-harmonic generation, Manley–Rowe relations and parametric amplification. Appl. Phys. B
**2006**, 84, 131–137. [Google Scholar] [CrossRef] - Popov, A.K.; Shalaev, V.M. Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett.
**2006**, 31, 2169–2171. [Google Scholar] [CrossRef] [PubMed] - Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.F.; Koschny, T.; Soukoulis, C.M. Magnetic response of metamaterials at 100 terahertz. Science
**2004**, 306, 1351–1353. [Google Scholar] [CrossRef] [PubMed] - Zhang, S.; Fan, W.J.; Minhas, B.K.; Frauenglass, A.; Malloy, K.J.; Brueck, S.R.J. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett.
**2005**, 94. [Google Scholar] [CrossRef] [PubMed] - Cai, W.S.; Chettiar, U.K.; Yuan, H.K.; Silva, V.C.; Kildishev, A.V.; Drachev, V.P.; Shalaev, V.M. Metamagnetics with rainbow colors. Opt. Express
**2007**, 15, 3333–3341. [Google Scholar] [CrossRef] [PubMed] - Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science
**2005**, 308, 534–537. [Google Scholar] [CrossRef] [PubMed] - Taubner, T.; Korobkin, D.; Urzhumov, Y.; Shvets, G.; Hillenbrand, R. Near-field microscopy through a SiC superlens. Science
**2006**, 313. [Google Scholar] [CrossRef] [PubMed] - Liu, Z.W.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying subdiffraction-limited objects. Science
**2007**, 315. [Google Scholar] [CrossRef] [PubMed] - Liu, Z.W.; Durant, S.; Lee, H.; Pikus, Y.; Fang, N.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical superlens. Nano Lett.
**2007**, 7, 403–408. [Google Scholar] [CrossRef] [PubMed] - Cai, W.S.; Genov, D.A.; Shalaev, V.M. Superlens based on metal-dielectric composites. Phys. Rev. B
**2005**, 72. [Google Scholar] [CrossRef] - Jacob, Z.; Alekseyev, L.V.; Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express
**2006**, 14, 8247–8256. [Google Scholar] [CrossRef] [PubMed] - Plum, E.; Fedotov, V.A.; Schwanecke, A.S.; Zheludev, N.I.; Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett.
**2007**, 90. [Google Scholar] [CrossRef] - Decker, M.; Klein, M.W.; Wegener, M.; Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett.
**2007**, 32, 856–858. [Google Scholar] [CrossRef] [PubMed] - Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science
**2006**, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed] - Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science
**2006**, 314, 977–980. [Google Scholar] [CrossRef] [PubMed] - Cai, W.S.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photonics
**2007**, 1, 224–227. [Google Scholar] [CrossRef][Green Version] - Cai, W.S.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M.; Milton, G.W. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett.
**2007**, 91. [Google Scholar] [CrossRef] - Cai, W.S.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Designs for optical cloaking with high-order transformations. Opt. Express
**2008**, 16, 5444–5452. [Google Scholar] [CrossRef] [PubMed] - Yu, N.; Genevet, P.; Aieta, F.; Kats, M.A.; Blanchard, R.; Aoust, G.; Tetienne, J.P.; Gaburro, Z.; Capasso, F. Flat optics: Controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quant. Electron.
**2013**, 19. [Google Scholar] [CrossRef] - Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science
**2011**, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] - Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science
**2013**, 339. [Google Scholar] [CrossRef] [PubMed] - Kats, M.A.; Blanchard, R.; Patrice, G.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater.
**2013**, 12, 20–24. [Google Scholar] [CrossRef] [PubMed] - Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; Hara, J.O.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propagat. Mag.
**2012**, 54, 10–35. [Google Scholar] [CrossRef] - Van Beijnum, F.; Van Veldhoven, P.J.; Geluk, E.J.; De Dood, M.J.; Gert, W.; Van Exter, M.P. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett.
**2013**, 110. [Google Scholar] [CrossRef] [PubMed] - Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The Influence of size, shape, and dielectric environment. J. Phys. Chem. B
**2003**, 107, 668–677. [Google Scholar] [CrossRef] - Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett.
**2007**, 98. [Google Scholar] [CrossRef] [PubMed] - Genet, C.; Ebbesen, T.W. Light in tiny holes. Nature
**2007**, 445, 39–46. [Google Scholar] [CrossRef] [PubMed] - García De Abajo, F.J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys.
**2007**, 79, 1267–1290. [Google Scholar] [CrossRef] - Parsons, J.; Hendry, E.; Burrows, C.P.; Auguié, B.; Sambles, J.R.; Barnes, W.L. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B
**2009**, 79. [Google Scholar] [CrossRef] - Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marqués, R.; Martín, F.; Sorolla, M. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett.
**2004**, 93. [Google Scholar] [CrossRef] [PubMed] - Zentgraf, T.; Meyrath, T.P.; Seidel, A.; Kaiser, S.; Giessen, H.; Rockstuhl, C.; Lederer, F. Babinet’s principle for optical metamaterials and nanoantennas. Phys. Rev. B
**2007**, 76. [Google Scholar] [CrossRef] - Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature
**1998**, 391, 667–669. [Google Scholar] [CrossRef] - Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotech.
**2016**, 11, 23–36. [Google Scholar] [CrossRef] [PubMed] - Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Weinheim, Germany, 2008; pp. 83–129. [Google Scholar]
- Popa, B.I.; Cummer, S.A. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys. Rev. Lett.
**2008**, 100. [Google Scholar] [CrossRef] [PubMed] - Peng, L.; Ran, L.; Chen, H.; Zhang, H.; Kong, J.A.; Grzegorczyk, T.M. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett.
**2007**, 98. [Google Scholar] [CrossRef] [PubMed] - Zhao, Q.; Kang, L.; Du, B.; Zhao, H.; Xie, Q.; Huang, X.; Li, B.; Zhou, J.; Li, L. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett.
**2008**, 101. [Google Scholar] [CrossRef] [PubMed] - Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today
**2009**, 12, 60–69. [Google Scholar] [CrossRef] - García-Etxarri, A.; Gómez-Medina, R.; Froufe-Pérez, L.S.; López, C.; Chantada, L.; Scheffold, F.; Aizpurua, J.; Nieto-Vesperinas, M.; Sáenz, J.J. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express
**2011**, 19, 4815–4826. [Google Scholar] [CrossRef] [PubMed] - Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Luk'Yanchuk, B. Magnetic light. Sci. Rep.
**2012**, 2. [Google Scholar] [CrossRef] [PubMed] - Fu, Y.H.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Yu, Y.F.; Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun.
**2013**, 4. [Google Scholar] [CrossRef] [PubMed] - Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’yanchuk, B.S.; Chichkov, B.N. Optical response features of Si-nanoparticle arrays. Phy. Rev. B
**2010**, 82. [Google Scholar] [CrossRef] - Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett.
**2012**, 12, 3749–3755. [Google Scholar] [CrossRef] [PubMed] - Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett.
**2013**, 13, 1806–1809. [Google Scholar] [CrossRef] [PubMed] - Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater.
**2015**, 3, 813–820. [Google Scholar] [CrossRef] - Zou, L.; Withayachumnankul, W.; Shah, C.M.; Mitchell, A.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Dielectric resonator nanoantennas at visible frequencies. Opt. Express
**2013**, 21, 1344–1352. [Google Scholar] [CrossRef] [PubMed] - Pfeiffer, C.; Emani, N.K.; Shaltout, A.M.; Boltasseva, A.; Shalaev, V.M.; Grbic, A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett.
**2014**, 14, 2491–2497. [Google Scholar] [CrossRef] [PubMed] - Dal Negro, L.; Boriskina, S.V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev.
**2012**, 6, 178–218. [Google Scholar] [CrossRef] - Dolling, G.; Enkrich, C.; Wegener, M.; Soukoulis, C.M.; Linden, S. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett.
**2006**, 31, 1800–1802. [Google Scholar] [CrossRef] [PubMed] - Avayu, O.; Eisenbach, O.; Ditcovski, R.; Ellenbogen, T. Optical metasurfaces for polarization-controlled beam shaping. Opt. Lett.
**2014**, 39, 3892–3895. [Google Scholar] [CrossRef] [PubMed] - Zhang, S.; Fan, W.; Malloy, K.J.; Brueck, S.R.J.; Panoiu, N.C.; Osgood, R.M. Near-infrared double negative metamaterials. Opt. Express
**2005**, 13, 4922–4930. [Google Scholar] [CrossRef] [PubMed] - Enkrich, C.; Perez-Williard, F.; Gerthsen, D.; Zhou, J.; Koschny, T.; Soukoulis, C.M.; Wegener, M.; Linden, S. Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater.
**2005**, 17, 2547–2549. [Google Scholar] [CrossRef] - Klein, M.W.; Enkrich, C.; Wegener, M.; Soukoulis, C.M.; Linden, S. Single-slit split-ring resonators at optical frequencies: Limits of size scaling. Opt. Lett.
**2006**, 31, 1259–1261. [Google Scholar] [CrossRef] [PubMed] - Brueck, S.R.J. Optical and interferometric lithography-nanotechnology enablers. IEEE Proc.
**2005**, 93, 1704–1721. [Google Scholar] [CrossRef] - Feth, N.; Enkrich, C.; Wegener, M.; Linden, S. Large-area magnetic metamaterials via compact interference lithography. Opt. Express
**2006**, 15, 501–507. [Google Scholar] [CrossRef] - Fan, W.; Zhang, S.; Malloy, K.J.; Brueck, S.R.J. Large-area, infrared nanophotonic materials fabricated using interferometric lithography. J. Vac. Sci. Technol. B
**2005**, 23, 2700–2704. [Google Scholar] [CrossRef] - Zhang, S.; Fan, W.; Malloy, K.J.; Brueck, S.R.; Panoiu, N.C.; Osgood, R.M. Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies. J. Opt. Soc. Am. B
**2006**, 23, 434–438. [Google Scholar] [CrossRef] - Ku, Z.; Brueck, S.R.J. Comparison of negative refractive index materials with circular, elliptical and rectangular holes. Opt. Express
**2007**, 15, 4515–4522. [Google Scholar] [CrossRef] [PubMed] - Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Nanoimprint lithography. J. Vac. Sci. Technol. B
**1996**, 14. [Google Scholar] [CrossRef] - Wu, W.; Kim, E.; Ponizovskaya, E.; Liu, Z.; Yu, Z.; Fang, N.; Shen, Y.R.; Bratkovsky, A.M.; Tong, W.; Sun, C.; et al. Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. A
**2007**, 87. [Google Scholar] [CrossRef] - Wu, W.; Yu, Z.; Wang, S.-Y.; Williams, R.B.; Liu, Y.; Sun, C.; Zhang, X.; Kim, E.; Shen, R.; Fang, N. Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett.
**2007**, 90. [Google Scholar] [CrossRef] - Chen, Y.; Tao, J.; Zhao, X.; Cui, Z.; Schwanecke, A.S.; Zheludev, N.I. Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron. Eng.
**2005**, 78–79, 612–617. [Google Scholar] [CrossRef] - Pang, S.W.; Tamamura, T.; Nakao, M.; Ozawa, A.; Masuda, H. Direct nano-printing on Al substrate using a SiC mold. J. Vac. Sci. Technol. B
**1998**, 16. [Google Scholar] [CrossRef] - Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical antennas. Adv. Opt. Photonics
**2009**, 1, 438–483. [Google Scholar] [CrossRef] - Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett.
**2012**, 12, 6328–6333. [Google Scholar] [CrossRef] [PubMed] - Kats, M.A.; Genevet, P.; Aoust, G.; Yu, N.; Blanchard, R.; Aieta, F.; Gaburro, Z.; Capasso, F. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. USA
**2012**, 109, 12364–12368. [Google Scholar] [CrossRef] - Sun, S.; Yang, K.Y.; Wang, C.M.; Juan, T.K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.T.; Guo, G.Y.; et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett.
**2012**, 12, 6223–6229. [Google Scholar] [CrossRef] [PubMed] - Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater.
**2012**, 11, 426–431. [Google Scholar] [CrossRef] [PubMed] - Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett.
**2012**, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed] - Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci. Appl.
**2013**, 2. [Google Scholar] [CrossRef] - Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science
**2014**, 345, 298–302. [Google Scholar] [CrossRef] [PubMed] - Parker, D.; Zimmermann, D.C. Phased arrays-part 1: Theory and architectures. IEEE Trans. Microw. Theory Tech.
**2002**, 50, 678–687. [Google Scholar] [CrossRef] - Parker, D.; Zimmermann, D.C. Phased arrays-part II: Implementations, applications, and future trends. IEEE Trans. Microw. Theory Tech.
**2002**, 50, 688–698. [Google Scholar] [CrossRef] - Pors, A.; Nielsen, M.G.; Eriksen, R.L.; Bozhevolnyi, S.I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett.
**2013**, 13, 829–834. [Google Scholar] [CrossRef] [PubMed] - Cowan, J.J. The surface plasmon resonance effect in holography. Opt. Commun.
**1972**, 5, 69–72. [Google Scholar] [CrossRef] - Tetienne, J.P.; Blanchard, R.; Yu, N.; Genevet, P.; Kats, M.A.; Fan, J.A.; Edamura, T.; Furuta, S.; Yamanishi, M.; Capasso, F. Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators. New J. Phys.
**2011**, 13. [Google Scholar] [CrossRef] - Genevet, P.; Lin, J.; Kats, M.A.; Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun.
**2012**, 3. [Google Scholar] [CrossRef] [PubMed] - Dolev, I.; Epstein, I.; Arie, A. Surface-plasmon holographic beam shaping. Phys. Rev. Lett.
**2012**, 109. [Google Scholar] [CrossRef] [PubMed] - Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antenna Propag.
**2010**, 58, 3212–3221. [Google Scholar] [CrossRef] - Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun.
**2013**, 4. [Google Scholar] [CrossRef] - Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun.
**2013**, 4. [Google Scholar] [CrossRef] - Jiang, Z.H.; Yun, S.; Lin, L.; Bossard, J.A.; Werner, D.H.; Mayer, T.S. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Sci. Rep.
**2013**, 3. [Google Scholar] [CrossRef] [PubMed] - Lawrence, N.; Trevino, J.; Dal Negro, L. Aperiodic arrays of active nanopillars for radiation engineering. J. Appl. Phys.
**2012**, 111. [Google Scholar] [CrossRef] - Kang, M.; Chen, J.; Wang, X.-L.; Wang, H.-T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. J. Opt. Soc. Am. B
**2012**, 29, 572–576. [Google Scholar] [CrossRef] - Huang, L.; Chen, X.; Muhlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett.
**2012**, 12, 5750–5755. [Google Scholar] [CrossRef] [PubMed] - Khorasaninejad, M.; Zhu, W.; Crozier, K.B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optical
**2015**, 2, 376–382. [Google Scholar] [CrossRef] - Minovich, A.E.; Miroshnichenko, A.E.; Bykov, A.Y.; Murzina, T.V.; Neshev, D.N.; Kivshar, Y.S. Functional and nonlinear optical metasurfaces. Laser Photonic Rev.
**2015**, 9, 195–213. [Google Scholar] [CrossRef] - Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonic
**2015**, 9, 180–184. [Google Scholar] [CrossRef] - Lee, J.; Tymchenko, M.; Argyropoulos, C.; Chen, P.Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M.C.; Alu, A.; Belkin, M.A. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature
**2014**, 511, 65–69. [Google Scholar] [CrossRef] [PubMed] - Tymchenko, M.; Gomez-Diaz, J.S.; Lee, J.; Nookala, N.; Belkin, M.A.; Alù, A. Gradient Nonlinear Pancharatnam-Berry Metasurfaces. Phys. Rev. Lett.
**2015**, 115. [Google Scholar] [CrossRef] [PubMed] - Li, G.; Chen, S.; Pholchai, N.; Reineke, B.; Wong, P.W.H.; Pun, E.Y.B.; Cheah, K.W.; Zentgraf, T.; Zhang, S. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater.
**2015**, 14, 607–612. [Google Scholar] [CrossRef] [PubMed] - Kim, S.; Wakatsuchi, H.; Rushton, J.J.; Sievenpiper, D.F. Switchable nonlinear metasurfaces for absorbing high power surface waves. Appl. Phys. Lett.
**2016**, 108. [Google Scholar] [CrossRef] - Wakatsuchi, H.; Kim, S.; Rushton, J.J.; Sievenpiper, D.F. Waveform-dependent absorbing metasurfaces. Phys. Rev. Lett.
**2013**, 111. [Google Scholar] [CrossRef] [PubMed] - Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin Hall effect at metasurfaces. Science
**2013**, 339, 1405–1407. [Google Scholar] [CrossRef] [PubMed] - Liu, Y.; Ling, X.; Yi, X.; Zhou, X.; Chen, S.; Ke, Y.; Luo, H.; Wen, S. Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking. Opt. Lett.
**2015**, 40, 756–759. [Google Scholar] [CrossRef] [PubMed] - Kapitanova, P.V.; Ginzburg, P.; Rodríguez-Fortuño, F.J.; Filonov, D.S.; Voroshilov, P.M.; Belov, P.A.; Poddubny, A.N.; Kivshar, Y.S.; Wurtz, G.A.; Zayats, A.V. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun.
**2014**, 5. [Google Scholar] [CrossRef] [PubMed] - Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun.
**2014**, 5. [Google Scholar] [CrossRef] [PubMed] - Mühlig, S.; Farhat, M.; Rockstuhl, C.; Lederer, F. Cloaking dielectric spherical objects by a shell of metallic nanoparticles. Phy. Rev. B
**2011**, 83. [Google Scholar] [CrossRef] - Monti, A.; Bilotti, F.; Toscano, A. Optical cloaking of cylindrical objects by using covers made of core–shell nanoparticles. Opt. Lett.
**2011**, 36, 4479–4481. [Google Scholar] [CrossRef] [PubMed] - Mühlig, S.; Cunningham, A.; Dintinger, J.; Farhat, M.; Hasan, S.B.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C. A self-assembled three-dimensional cloak in the visible. Sci. Rep.
**2013**, 3. [Google Scholar] [CrossRef] [PubMed] - Farhat, M.; Mühlig, S.; Rockstuhl, C.; Lederer, F. Scattering cancellation of the magnetic dipole field from macroscopic spheres. Opt. Express
**2012**, 20, 13896–13906. [Google Scholar] [CrossRef] [PubMed] - Monti, A.; Alù, A.; Toscano, A.; Bilotti, F. Optical invisibility through metasurfaces made of plasmonic nanoparticles. J. Appl. Phy.
**2015**, 117. [Google Scholar] [CrossRef] - Fruhnert, M.; Monti, A.; Fernandez-Corbaton, I.; Alù, A.; Toscano, A.; Bilotti, F.; Rockstuhl, C. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible. Phys. Rev. B
**2016**, 93. [Google Scholar] [CrossRef] - Zhao, Z.; Wang, J.; Li, S.; Willner, A.E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt. Lett.
**2013**, 38, 932–934. [Google Scholar] [CrossRef] [PubMed] - Zhao, Z.; Wang, J.; Li, S.; Willner, A.E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 9–14 June 2013.
- Du, J.; Wang, J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Sci. Rep.
**2015**, 5. [Google Scholar] [CrossRef] [PubMed] - Du, J.; Chen, S.; Liu, J.; Li, S.H.; Zhu, L.; Zhao, Y.F.; Wang, J. Design and fabrication of metasurface on conventional optical fiber facet for linearly polarized mode (LP
_{11}) generation at visible light wavelength. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 5–10 June 2016. - Hu, X.; Wang, J. High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene. Opt. Lett.
**2015**, 40, 5538–5541. [Google Scholar] [CrossRef] [PubMed] - Du, J.; Li, X.H.; Li, S.H.; Zhu, L.; Zhou, N.; Liu, J.; Chen, S.; Zhao, Y.F.; Wang, J. Experimental demonstration of chip-scale orbital angular momentum (OAM) beams generation and detection using nanophotonic dielectric metasurface array. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016.
- Du, J.; Xu, Z.; Zhu, L.; Li, S.; Wang, J. Design of on-chip dielectric elliptical meta-reflectarray for Bessel beams generation and N-fold orbital angular momentum (OAM) multicasting. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 10–15 May 2015.
- Yu, Y.F.; Zhu, A.Y.; Paniagua-Domínguez, R.; Fu, Y.H.; Luk'yanchuk, B.; Kuznetsov, A.I. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev.
**2015**, 9, 412–418. [Google Scholar] [CrossRef] - Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett.
**2014**, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed] - West, P.R.; Stewart, J.L.; Kildishev, A.V.; Shalaev, V.M.; Shkunov, V.V.; Strohkendl, F.; Zakharenkov, Y.A.; Dodds, R.K.; Byren, R. All-dielectric subwavelength metasurface focusing lens. Opt. Express
**2014**, 22, 26212–26221. [Google Scholar] [CrossRef] [PubMed] - Hsu, L.; Lepetit, T.; Kanté, B. Extremely thin dielectric metasurface for carpet cloaking. arXiv.org
**2015**. [Google Scholar] - Xiao, S.; Drachev, V.P.; Kildishev, A.V.; Ni, X.; Chettiar, U.K.; Yuan, H.K.; Shalaev, V.M. Loss-free and active optical negative-index metamaterials. Nature
**2010**, 466, 735–738. [Google Scholar] [CrossRef] [PubMed] - West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev.
**2010**, 4, 795–808. [Google Scholar] [CrossRef] - Naik, G.V.; Liu, J.; Kildishev, A.; Shalaev, V.M.; Boltasseva, A. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. USA
**2012**, 109, 8834–8838. [Google Scholar] [CrossRef] [PubMed] - Naik, G.V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express
**2011**, 1, 1090–1099. [Google Scholar] [CrossRef] - Naik, G.V.; Schroeder, J.L.; Ni, X.; Kildishev, A.V.; Sands, T.D.; Boltasseva, A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express
**2013**, 3, 1658–1659. [Google Scholar] [CrossRef] - Zheludev, N.I. A roadmap for metamaterials. Opt. Photonic News
**2011**, 22, 30–35. [Google Scholar] [CrossRef] - Zheludev, N.I.; Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotech.
**2016**, 11, 16–22. [Google Scholar] [CrossRef] [PubMed] - Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater.
**2012**, 11, 917–924. [Google Scholar] [CrossRef] [PubMed] - Emani, N.K.; Chung, T.F.; Kildishev, A.V.; Shalaev, V.M.; Chen, Y.P.; Boltasseva, A. Electrical modulation of Fano resonance in plasmonic nanostructures using graphene. Nano Lett.
**2013**, 14, 78–82. [Google Scholar] [CrossRef] [PubMed] - Argyropoulos, C. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt. Express
**2015**, 23, 23787–23797. [Google Scholar] [CrossRef] [PubMed] - Ou, J.Y.; Plum, E.; Zhang, J.; Zheludev, N.I. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater.
**2016**, 28, 729–733. [Google Scholar] [CrossRef] [PubMed] - Valente, J.; Ou, J.Y.; Plum, E.; Youngs, I.J.; Zheludev, N.I. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett.
**2015**, 106. [Google Scholar] [CrossRef] - He, J.; Xie, Z.; Sun, W.; Wang, X.; Ji, Y.; Wang, S.; Yuan, L.; Zhang, Y. Terahertz tunable metasurface lens based on vanadium dioxide phase transition. Plasmonics
**2016**. [Google Scholar] [CrossRef] - Urade, Y.; Nakata, Y.; Okimura, K.; Nakanishi, T.; Miyamaru, F.; Takeda, M.W.; Kitano, M. Dynamically Babinet-invertible metasurface: A capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition. Opt. Express
**2016**, 24, 4405–4410. [Google Scholar] [CrossRef] - Thyagarajan, K.; Sokhoyan, R.; Zornberg, L.; Atwater, H. Millivolt modulation of plasmonic metasurface via ionic conductance. arXiv.org
**2015**. [Google Scholar]

**Figure 1.**Schematic illustration of meta-atom, 1D chain, 2D metasurface and 3D metamaterials. Inserts are the representation of the parameter space for permittivity ε and permeability μ and the typical examples of the applications of metamaterials.

**Figure 2.**Schematic illustration of the classification, fabrication and applications of metasurfaces.

**Figure 3.**(

**a**) Schematic structure of metasurfaces for generating the OAM-carrying vector beams; (

**b**) geometric parameters: the radii are r

_{i}= (i + 6.3) × 700 nm (i = 0, 1), and the orientation angle is α($\mathsf{\varphi}$) = l$\mathsf{\varphi}$ + α

_{0}(l = 2, α

_{0}= 0 as an example) with respect to the x axis; the rectangular aperture has a dimension of 600 × 140 nm; (

**c**) illustration of generating the OAM-carrying vector beam (OAM charge number: two, polarization order: two). Reproduced with permission from [118], Copyright The Optical Society, 2013.

**Figure 4.**Spatial distributions of the phase, power and polarization of the generated OAM-carrying vector beams (σ = 1: left circularly polarized input beam, α

_{0}= 0: along the direction of

**e**

_{1}($\mathsf{\varphi}$)). Reproduced with permission from [118], Copyright The Optical Society, 2013.

**Figure 5.**Wavelength-dependent (

**a**) extinction ratio (ER); and (

**b**) purity for the generation of OAM-carrying vector beams. Insets in (

**b**) show the weight as functions of OAM charge number (left) and polarization order number (right) at 1550 nm. Reproduced with permission from [118], Copyright The Optical Society, 2013.

**Figure 6.**(

**a**) Schematic structure of metasurfaces; (

**b**) geometric parameters: the radius of the ring is r

_{i}= (2i + 0.3) × 700 nm, where i = 1, 2 and 3. The rectangular aperture has dimensions of 600 × 140 nm and an orientation angle of α

_{i}($\mathsf{\varphi}$) = i$\mathsf{\varphi}$ + α

_{i}

_{0}with respect to the x axis. Reproduced with permission from [119], Copyright The Optical Society, 2013.

**Figure 7.**(

**a**) Wavelength-dependent extinction ratio for three OAM-carrying vector beams; (

**b**) the dependence of extinction ratio on the initial orientation angle α

_{20}(second ring); (

**c**) spatial distributions of phase, power components and polarization. Reproduced with permission from [119], Copyright The Optical Society, 2013.

**Figure 8.**Schematic diagram of the fabrication process of the proposed metasurfaces to generate broadband OAM-carrying vector beams. EBL, electron-beam lithography; EBE, electron-beam evaporation.

**Figure 9.**Concept and principle of N-fold multicasting of OAM beams using a V-shaped antenna phase array. Reproduced with permission from [120], Copyright Nature Publishing Group, 2015.

**Figure 10.**(

**a**) Discretization of the ideal continuous phase pattern; (

**b**) power distributions of OAM channels generated by the continuous phase pattern and the discrete phase pattern; (

**c**) top view of the designed V-shaped antenna array based on the discrete phase pattern; it repeats with a periodicity of 2 μm in both the x and y directions; (

**d**) details of the designed V-shaped antenna array. Reproduced with permission from [120], Copyright Nature Publishing Group, 2015.

**Figure 11.**(

**a**) Intensity distribution of the four collinearly-superimposed OAM beams; (

**b**) intensity distribution of the undesired OAM channels after demultiplexing; (

**c**) intensity distribution of the multicasting OAM channels after demultiplexing; (

**d**) power distributions of the OAM channels generated by the designed V-shaped antenna array and the theoretical continuous phase pattern. Reproduced with permission from [120], Copyright Nature Publishing Group, 2015.

**Figure 12.**Schematic diagram of fabrication process of the proposed V-shaped antenna array to realize N-fold OAM multicasting. EBL, electron-beam lithography; EBE, electron-beam evaporation.

**Figure 13.**(

**a**) Concept and principle of the LP

_{11}mode generation using the metasurface on the facet of G.652 single mode fiber (SMF); (

**b**) fabrication process of the metasurface on the facet of G.652 SMF. EBE, electron beam evaporation; FIB, focused ion beam. Reproduced with permission from [121], Copyright Nature Publishing Group, 2016.

**Figure 14.**(

**a**) Schematic of the coherent perfect absorption (CPA) in a split-ring graphene film (Case 1); two coherent optical beams (A, B) impinge on the graphene film from opposite sides at normal incidence; (

**b**) interaction of light with light on a split-ring graphene SiO

_{2}substrate (Case 2); (

**c**) a unit cell of the split-ring graphene film with geometric parameters. Reproduced with permission from [122], Copyright The Optical Society, 2015.

**Figure 15.**(

**a**) Simulated reflection, transmission and absorption of the split-ring graphene film under the illumination of only one beam at normal incidence; (

**b**) normalized total absorption under the illumination of two counter-propagating coherent beams with the same intensities and phases; the chemical potential of graphene is assumed to be μ

_{c}= 0.3 eV; (

**c**) simulated normalized total absorption as a function of relative phase difference between two counter-propagating coherent beams. Reproduced with permission from [122], Copyright The Optical Society, 2015.

**Figure 16.**Simulated normalized absorption spectra for single-beam surface-normal illumination from (

**a**) the split-ring graphene side; and (

**b**) the SiO

_{2}side under different chemical potentials of graphene. Reproduced with permission from [122], Copyright The Optical Society, 2015.

**Figure 17.**(

**a**) Center frequency tunable total absorption spectra of the split-ring graphene under different chemical potentials; (

**b**) total absorption of the split-ring graphene when the chemical potential is μ

_{c}= 0 eV. Reproduced with permission from [122], Copyright The Optical Society, 2015.

**Figure 18.**Schematic diagram of the fabrication process of the proposed graphene split-ring metasurface. EBL, electron-beam lithography.

**Figure 19.**Schematic diagram of the top view of the designed reflective dielectric rectangle/ellipse metasurface units based on a silicon-on-insulator (SOI) platform.

**Figure 20.**Schematic of eight dielectric rectangle resonators chosen to generate OAM beams, providing a phase shift from 0 to 2π and nearly constant amplitude.

**Figure 21.**Simulated intensity and phase distributions of the generated OAM beams by the proposed rectangle dielectric metasurface array at a wavelength of 1064 nm.

**Figure 23.**Simulated intensity and phase distributions of the generated OAM beams by the proposed dielectric ellipse metasurface array at a wavelength of 632.8 nm. Reproduced with permission from [123], Copyright The Optical Society, 2016.

**Figure 24.**(

**a**) Experimental intensities of the generated OAM beams of l = 1–4 by the proposed dielectric metasurface array at a wavelength of 980 nm; (

**b**) experimental intensities of the generated OAM beams after being interfered with by the Gaussian beam with l = 0.

**Figure 25.**(

**a**) Schematic diagram of the fabrication process of the proposed dielectric ellipse metasurface array (EBL, electron-beam lithography; ICP, inductively-coupled plasma); (

**b**) scanning electron microscope (SEM) images of the top view of a fabricated dielectric ellipse metasurface array to generate the OAM beam. Reproduced with permission from [124], Copyright The Optical Society, 2015.

**Figure 26.**(

**a**) Schematic of the eight resonators chosen to generate the Bessel beams, providing a phase shift from 0 to 2π and a nearly constant amplitude; (

**b**) simulated intensity of four Bessel beams (l = 0, 1, 10, 20) by replacing the corresponding phase patterns with the eight chosen resonators; (

**c**) purities of the generated Bessel beams with different indices versus the topological number l with varied propagation length L. Reproduced with permission from [124], Copyright The Optical Society, 2015.

**Figure 27.**(

**a**) Ideal phase pattern to generate six-fold OAM multicasting (l = 1, 4, 7, 10, 13, 16); (

**b**) top view of the designed dielectric ellipse array to generate six-fold OAM multicasting by replacing the ideal phase pattern with corresponding resonators; (

**c**) power distributions of the OAM channels generated by the ideal phase pattern and the dielectric ellipse array; (

**d**) intensity distribution of six collinearly-superimposed OAM beams; (

**e**) intensity distribution of undesired OAM channels after demultiplexing; (

**f**) intensity distribution of multicasting OAM channels after demultiplexing. Reproduced with permission from [124], Copyright The Optical Society, 2015.

Metal V-shaped nano-antennas to generate optical beams carrying orbital angular momentum (OAM). Reproduced with permission from [34], Copyright The American Association for the Advancement of Science, 2011. | |

Au patch antennas separated from a metal back plane by a MgF_{2} spacer to realize anomalous reflections. Reproduced with permission from [81], Copyright American Chemical Society, 2012. | |

H-shaped microwave nano-antenna arrays to realize high efficiency conversion from propagating waves to surface waves. Reproduced with permission from [82], Copyright Nature Publishing Group, 2012. | |

Metal nanorods to generate a hologram. Reproduced with permission from [95], Copyright Nature Publishing Group, 2013. | |

Freestanding nanofabricated fishnet metasurface to function as a broadband band pass filter. Reproduced with permission from [96], Copyright Nature Publishing Group, 2013. | |

Rectangular apertures arranged in an array with rotational symmetry in metal film to generate OAM beams. Reproduced with permission from [98], Copyright The Optical Society, 2012. | |

Metal nanorods to generate broadband OAM beams. Reproduced with permission from [99], Copyright American Chemical Society, 2012. | |

Split-ring resonators to generate the second harmonic. Reproduced with permission from [102], Copyright Nature Publishing Group, 2015. |

Er-doped Si-rich silicon nitride nano-pillar array for enhanced omnidirectional light extraction and OAM beam generation. Reproduced with permission from [97], Copyright AIP Publishing LLC, 2012. | |

Si-based metasurfaces possessing sharp electromagnetically-induced transparency-like resonances in the near-infrared regime. Reproduced with permission from [111], Copyright Nature Publishing Group, 2014. | |

Silicon nanobeams antennas function as a flat axicon to generate Bessel beams. Reproduced with permission from [85], Copyright The American Association for the Advancement of Science, 2014. | |

Amorphous-silicon nanoridges to realize polarization beam splitting at the pixel-level. Reproduced with permission from [100], Copyright The Optical Society, 2015. | |

Silicon nanodiscs to achieve high transmission and full phase control in visible wavelengths. Reproduced with permission from [125], Copyright John Wiley and Sons, 2015. | |

Silicon cut-wire array in combination with a silver ground plane to achieve high linear polarization conversion efficiency in the near-infrared band. Reproduced with permission from [126], Copyright American Chemical Society, 2014. | |

Silicon nano-pillar array to realize low loss micro-lenses in the near-infrared band. Reproduced with permission from [127], Copyright The Optical Society, 2014. | |

Dielectric metasurface with a tailored phase gradient to achieve carpet cloaking at microwave frequencies [128] |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, J.; Du, J. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications. *Appl. Sci.* **2016**, *6*, 239.
https://doi.org/10.3390/app6090239

**AMA Style**

Wang J, Du J. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications. *Applied Sciences*. 2016; 6(9):239.
https://doi.org/10.3390/app6090239

**Chicago/Turabian Style**

Wang, Jian, and Jing Du. 2016. "Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications" *Applied Sciences* 6, no. 9: 239.
https://doi.org/10.3390/app6090239