Quantifying Thermoset Cure State During Fabrication of a Laminated Composite Using Ultrasonic Waveform Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Configuration and Setup
2.2. Analysis Methods to Correlate Acoustic Data to Cure State
2.2.1. Tracking Approach
2.2.2. Speed of Sound for Degree of Cure
2.2.3. Reflected Power
2.3. Rheological Testing Methodology
3. Results
3.1. Speed of Sound Results
3.2. Degree of Cure from Ultrasonic Time of Flight
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fink, J.K. Reactive Polymers—Fundamentals and Applications—A Concise Guide to Industrial Polymers; Elsevier: Cambridge, MA, USA, 2018. [Google Scholar]
- Blackman, N.J.; Jack, D.A.; Blandford, B.M. Improvement in the Quantification of Foreign Object Defects in Carbon Fiber Laminates Using Immersion Pulse-Echo Ultrasound. Materials 2021, 14, 2919. [Google Scholar] [CrossRef] [PubMed]
- Benammar, A.; Drai, R.; Guessoum, A. Detection of Delamination Defects in CFRP Materials Using Ultrasonic Signal Processing. Ultrasonics 2008, 48, 731–738. [Google Scholar] [CrossRef]
- Rus, J.; Gustschin, A.; Mooshofer, H.; Grager, J.-C.; Bente, K.; Gaal, M.; Pfeiffer, F.; Grosse, C.U. Qualitative Comparison of Non-Destructive Methods for Inspection of Carbon Fiber-Reinforced Polymer Laminates. J. Compos. Mater. 2020, 54, 4325–4337. [Google Scholar] [CrossRef]
- Blandford, B.M.; Jack, D.A. High Resolution Depth and Area Measurements of Low Velocity Impact Damage in Carbon Fiber Laminates via an Ultrasonic Technique. Composites Part B 2020, 188, 107843. [Google Scholar] [CrossRef]
- Hsu, D.K.; Im, K.-H.; Cho, Y.-T.; Park, J.-W.; Sim, J.-K.; Yang, I.-Y. Characterization of CFRP Laminates’ Layups Using Through-Transmitting Ultrasound Waves. KSME Int. 2002, 16, 292–301. [Google Scholar] [CrossRef]
- Stair, S.L.; Moore, D.G.; Jack, D.A.; Nelson, C.L. Non-Destructive Evaluation of the Bondline Interface Between Carbon Fiber Reinforced Laminated Composites and Metal Materials Via Ultrasonic Inspection Methods. 2017. Available online: https://www.osti.gov/biblio/1429656 (accessed on 28 January 2026).
- Pulipati, D.P.; Blandford, B.M.; Ravindranath, P.K.; Jack, D.A. Adhesive Thickness Quantification of CFRP Laminates Using Ultrasound. 2021. Available online: https://www.ndt.net/search/docs.php3?id=26963 (accessed on 28 January 2026).
- Zhang, K.; Gu, Y.; Li, M.; Wang, S.; Zhang, Z. Effects of Curing Time and De-Molding Temperature on the Deformation of Fiber/Epoxy Resin Prepreg Laminates Fabricated by Rapid Hot Press. Polym. Polym. Compos. 2019, 27, 301–313. [Google Scholar] [CrossRef]
- Biron, M. Thermosets and Composites—Material Selection, Applications, Manufacturing, and Cost Analysis; Elsevier: San Diego, CA, USA, 2014. [Google Scholar]
- Dodiuk, H.; Goodman, S.H. Handbook of Thermoset Plastics; Elsevier: Waltham, MA, USA, 2014. [Google Scholar]
- Bilyeu, B.; Witold, B.; Menard, K.P. Epoxy Thermosets and Their Applications III. Kinetic Equations and Models. J. Mater. Educ. 2001, 23, 189–204. [Google Scholar]
- Du, S.; Guo, Z.-S.; Zhang, B.; Wu, Z. Cure Kinetics of Epoxy Resin Used for Advanced Composites. Polym. Int. 2004, 53, 1343–1347. [Google Scholar] [CrossRef]
- Hardis, R.; Jessop, J.L.P.; Peters, F.E.; Kessler, M.R. Cure Kinetics Characterization and Monitoring of an Epoxy Resin Using DSC, Raman Spectroscopy and DEA. Compos. Part A 2013, 49, 100–108. [Google Scholar] [CrossRef]
- Vacher, S.; Molimard, J.; Gagnaire, H.; Vautrin, A. A Fresnel’s Reflection Optical Fiber Sensor for Thermoset Polymer Cure Monitoring. Polym. Polym. Compos. 2004, 12, 269–276. [Google Scholar] [CrossRef]
- Cusano, A.; Breglio, G.; Giordano, M.; Calabro, A.; Cutolo, A.; Nicolais, L. An Optoelectronic Sensor for Cure Monitoring in Thermoset-Based Composites. Sens. Actuators 2000, 84, 270–275. [Google Scholar] [CrossRef]
- Blößl, Y.; Hegedüs, G.; Szebényi, G.; Tábi, T.; Schledjewski, R.; Czigany, T. Applicability of Fiber Bragg Grating Sensors for Cure Monitoring in Resin Transfer Molding Processes. J. Reinf. Plast. Compos. 2020, 40, 701–713. [Google Scholar] [CrossRef]
- Yenilmez, B.; Sozer, E.M. A Grid of Dielectric Sensors to Monitor Mold Filling and Resin Cure in Resin Transfer Molding. Compos. Part A 2009, 40, 476–489. [Google Scholar] [CrossRef]
- Vogelwaid, J.; Hampel, F.; Bayer, M.; Walz, M.; Kutuzova, L.; Lorenz, G.; Kandelbauer, A.; Jacob, T. In Situ Monitoring of the Curing of Highly Filled Epoxy Molding Compounds: The Influence of Reaction Type and Silica Content on Cure Kinetic Models. Polymers 2024, 16, 1056. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Q.; Liu, D.; Fan, J.; Zhang, Q.; Chen, W. In Situ Monitoring of Epoxy Resin Curing Process: Using Glass Transition as a Bridge. Polym. Test. 2023, 117, 107871. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Breed, A.; Chaloipka, A.; Bodecker, A.; Habben, C.; Meyer, E.-M.; Brauner, C.; Lang, W. Design, Fabrication and Embedding of Microscale Interdigital Sensors for Real-Time Cure Monitoring during Composite Manufacturing. Sens. Actuators A Phys. 2016, 243, 123–133. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Jadhav, N.C.; Hosur, M.V.; Gillespie, J.W., Jr.; Fink, B.K. Assessment of Flow and Cure Monitoring Using Direct Current and Alternating Current Sensing in Vacuum-Assisted Resin Transfer Molding. Smart Mater. Struct. 2000, 9, 727. [Google Scholar] [CrossRef]
- Pantelelis, N.; Bistekos, E.; Emmerich, R.; Gerard, P.; Zoller, A.; Gallardo, R.R. Compression RTM of Reactive Thermoplastic Composites Using Microwaves and Cure Monitoring. Procedia CIRP 2019, 85, 249–254. [Google Scholar] [CrossRef]
- Kim, W.C.; Jo, H.J.; Park, G. Concrete Cure Monitoring Using Piezoelectric Admittance Measurements. In Proceedings of the 2015 World Congress on Advances in Structural Engineering and Mechanic, Incheon, Republic of Korea, 25–29 August 2015. [Google Scholar]
- Lionetto, F.; Maffezzoli, A. Monitoring the Cure State of Thermosetting Resins by Ultrasound. Materials 2013, 6, 3783–3804. [Google Scholar] [CrossRef]
- Kyriazis, A.; Asali, K.; Sinapius, M.; Rager, K.; Dietzel, A. Adhesion of Multifunctional Substrates for Integrated Cure Monitoring Film Sensors to Carbon Fiber Reinforced Polymers. J. Compos. Sci. 2020, 4, 138. [Google Scholar] [CrossRef]
- Ivanov, O.V.; Bhavsar, K.; Morgan-Clague, O.; Gilbert, J.M. Monitoring of Curing Process of Epoxy Resin by Long-Period Fiber Gratings. Sensors 2024, 24, 3397. [Google Scholar] [CrossRef]
- Shepard, D.D.; Smith, K.R. A New Ultrasonic Measurement System Of The Cure Monitoring of Thermosetting Resins and Composites. J. Therm. Anal. 1997, 49, 95–100. [Google Scholar] [CrossRef]
- Lionetto, F.; Maffezzoli, A. Polymer Characterization by Ultrasonic Wave Propagation. Adv. Polym. Technol. 2009, 27, 63–73. [Google Scholar] [CrossRef]
- Schmachtenberg, E.; Schulte zur Heide, J.; Töpker, J. Application of Ultrasonics for the Process Control of Resin Transfer Moulding (RTM). Polym. Test. 2005, 24, 330–338. [Google Scholar] [CrossRef]
- Whitney, T.M.; Green, R.E., Jr. Cure Monitoring of Carbon Epoxy Composites: An Application of Resonant Ultrasound Spectroscopy. Ultrasonics 1996, 34, 347–353. [Google Scholar] [CrossRef]
- Zhao, J.; He, C.; Ren, L.; Huang, L. Application of Ultrasonic Technique for Cure Monitoring of Epoxy/Graphene Oxide-Carbon Nanotubes Composites. Appl. Compos. Mater. 2024, 31, 61–81. [Google Scholar] [CrossRef]
- Seisdedos, G.; Viamontes, E.; Salazar, E.; Pantea, C.; Davis, E.S.; Rockward, T.; Boesl, B. Real-Time Non-Destructive Characterization of Epoxy Resin Curing Kinetics and Mechanical Response for Enhanced Manufacturing Quality Control. Polym. Test. 2025, 143, 108678. [Google Scholar] [CrossRef]
- Ghodbani, N.; Marechal, P.; Duflo, H. Ultrasound Monitoring of the Cure Kinetics of an Epoxy Resin: Identification, Frequency and Temperature Dependance. Polym. Test. 2016, 56, 156–166. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Yang, Q.; Xue, R.; Zhang, J.; Sun, Y.; Xu, D.; Krishnaswamy, S. Research on Epoxy Resin Curing Monitoring Using Laser Ultrasonic. Measurement 2020, 158, 107737. [Google Scholar] [CrossRef]
- Pavlopoulou, S.; Soutis, C.; Staszewski, W.J. Cure Monitoring through Time-Frequency Analysis of Guided Ultrasonic Waves. Plast. Rubber Compos. 2012, 41, 180–186. [Google Scholar] [CrossRef]









| Sample Type | Temperature (°C) | Thickness (mm) | Number Samples Tested |
|---|---|---|---|
| Neat Resin | 22 | 12.7 | 3 |
| Neat Resin | 22 | 6.4 | 3 |
| Neat Resin | 40 | 12.7 | 3 |
| Fiberglass + Resin | 22 | 12.7 | 3 |
| Fiberglass + Resin | 40 | 12.7 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rose, S.M.; Wilkins, J.C.; Fleck, T.J.; Jack, D.A. Quantifying Thermoset Cure State During Fabrication of a Laminated Composite Using Ultrasonic Waveform Analysis. Appl. Sci. 2026, 16, 1473. https://doi.org/10.3390/app16031473
Rose SM, Wilkins JC, Fleck TJ, Jack DA. Quantifying Thermoset Cure State During Fabrication of a Laminated Composite Using Ultrasonic Waveform Analysis. Applied Sciences. 2026; 16(3):1473. https://doi.org/10.3390/app16031473
Chicago/Turabian StyleRose, Savannah M., Jackson C. Wilkins, Trevor J. Fleck, and David A. Jack. 2026. "Quantifying Thermoset Cure State During Fabrication of a Laminated Composite Using Ultrasonic Waveform Analysis" Applied Sciences 16, no. 3: 1473. https://doi.org/10.3390/app16031473
APA StyleRose, S. M., Wilkins, J. C., Fleck, T. J., & Jack, D. A. (2026). Quantifying Thermoset Cure State During Fabrication of a Laminated Composite Using Ultrasonic Waveform Analysis. Applied Sciences, 16(3), 1473. https://doi.org/10.3390/app16031473

