Combining Different Yarrowia divulgata Yeast-Based Fermentations into an Integrated Bioprocess for Manufacturing Pigment, Sweetener, Bioemulsifier, and Skin Moisturiser
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermentation
Analytical Methods
2.2. Erythritol Extraction and Crystallization Test
2.3. Pigment Extraction
2.4. Preparation of Cell Lysates for Skin Application Tests
2.5. Skin Moisturizing Measurement
2.6. Emulsifying Activity Measurement
2.7. Statistical Analysis
2.8. Kinetic Model Analysis
3. Results
3.1. Fermentation
3.2. Kinetics Model Analysis
3.3. Erythritol Extraction
3.4. Emulsification Index
3.5. Skin Moisturizing
3.6. Pigment Fermentation
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagy, E.; Niss, M.; Dlauchy, D.; Arneborg, N.; Nielsen, D.S.; Péter, G. Yarrowia divulgata fa, sp. nov., a yeast species from animal-related and marine sources. Int. J. Syst. Evol. Microbiol. 2013, 63, 4818–4823. [Google Scholar] [CrossRef]
- Ruan, Y. The advantages of erythritol compared with the common natural sweeteners in the market and current uses in the food and food industries. In Second International Conference on Biological Engineering and Medical Science; SPIE: Bellingham, WA, USA, 2022; Volume 12611, pp. 441–453. [Google Scholar] [CrossRef]
- Khatape, A.B.; Dastager, S.G.; Rangaswamy, V. An overview of erythritol production by yeast strains. FEMS Microbiol. Lett. 2022, 369, fnac107. [Google Scholar] [CrossRef]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Recent advances in biological production of erythritol. Crit. Rev. Biotechnol. 2018, 38, 620–633. [Google Scholar] [CrossRef]
- Mazi, T.A.; Stanhope, K.L. Erythritol: An in-depth discussion of its potential to be a beneficial dietary component. Nutrients 2023, 15, 204. [Google Scholar] [CrossRef]
- Awuchi, C.G. Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int. J. Adv. Acad. Res. 2017, 3, 31–66. [Google Scholar]
- Mustafa, A.; Misailidis, N.; da Gama Ferreira, R.; Petrides, D. Erythritol Production via Fermentation Using Glycerol as Carbon Source Process Modeling and Cost Analysis Using SuperPro Designer®; INTELLIGEN, INC.: Scotch Plains, NJ, USA, 2024. [Google Scholar]
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef]
- Tomaszewska-Hetman, L.; Rymowicz, W.; Rywińska, A. Waste conversion into a sweetener—Development of an innovative strategy for erythritol production by Yarrowia lipolytica. Sustainability 2020, 12, 7122. [Google Scholar] [CrossRef]
- Juszczyk, P.; Rywińska, A.; Kosicka, J.; Tomaszewska-Hetman, L.; Rymowicz, W. Sugar Alcohol Sweetener Production by Yarrowia lipolytica Grown in Media Containing Glycerol. Molecules 2023, 28, 6594. [Google Scholar] [CrossRef]
- Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci. World J. 2014, 2014, 476207. [Google Scholar] [CrossRef]
- Timoumi, A.; Guillouet, S.E.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2018, 102, 3831–3848. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rakicka, M.; Rymowicz, W.; Rywińska, A. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res. 2014, 14, 966–976. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-B.; Dai, X.-M.; Zheng, Z.-Y.; Zhu, L.; Zhan, X.-B.; Lin, C.-C. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. J. Microbiol. Biotechnol. 2015, 5, 1056–1069. [Google Scholar] [CrossRef] [PubMed]
- Rymowicz, W.; Rywińska, A.; Marcinkiewicz, M. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 2009, 31, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Sonnenberg, A.; Baars, J.; Hendrickx, P. IEA Bioenergy Task 42 Biorefinery; Avantium, Biomass Research and Wageningen University and Research Centre: Wageningen, The Netherlands, 2007. [Google Scholar]
- Daza-Serna, L.; Serna-Loaiza, S.; Masi, A.; Mach, R.L.; Mach-Aigner, A.R.; Friedl, A. From the culture broth to the erythritol crystals: An opportunity for circular economy. Appl. Microbiol. Biotechnol. 2021, 105, 4467–4486. [Google Scholar] [CrossRef]
- Cordero, R.J.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, X.; Gao, S.; Li, D.; Zhou, J. Production of Natural Pigments Using Microorganisms. J. Agric. Food Chem. 2023, 72, 9187–9572. [Google Scholar] [CrossRef]
- Larroude, M.; Onésime, D.; Rué, O.; Nicaud, J.-M.; Rossignol, T. A Yarrowia lipolytica Strain Engineered for Pyomelanin Production. Microorganisms 2021, 9, 838. [Google Scholar] [CrossRef]
- Yabuuchi, E.; Ohyama, A. Characterization of “Pyomelanin”-Producing Strains of Pseudomonas aeruginosa. Int. J. Syst. Bacteriol. 1972, 22, 53–64. [Google Scholar] [CrossRef]
- Carreira, A.; Ferreira, L.M.; Loureiro, V. Brown Pigments Produced by Yarrowia lipolytica Result from Extracellular Accumulation of Homogentisic Acid. Appl. Environ. Microbiol. 2001, 67, 3463–3468. [Google Scholar] [CrossRef]
- Urbaniak, M.M.; Gazińska, M.; Rudnicka, K.; Płociński, P.; Nowak, M.; Chmiela, M. In Vitro and In Vivo Biocompatibility of Natural and Synthetic Pseudomonas aeruginosa Pyomelanin for Potential Biomedical Applications. Int. J. Mol. Sci. 2023, 24, 7846. [Google Scholar] [CrossRef]
- Turick, C.; Knox, A.S.; Becnel, J.; Ekechukwu, A. Properties and Function of Pyomelanin. In Biopolymers; IntechOpen: London, UK, 2010. [Google Scholar]
- Zeng, Z.; Guo, X.-P.; Cai, X.; Wang, P.; Li, B.; Yang, J.-L.; Wang, X. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microb. Biotechnol. 2017, 10, 1718–1731. [Google Scholar] [CrossRef]
- Martínez, L.M.; Martinez, A.; Gosset, G. Production of Melanins With Recombinant Microorganisms. Front. Bioeng. Biotechnol. 2019, 7, 285. [Google Scholar] [CrossRef]
- Lorquin, F.; Piccerel, P.; Orneto, C.; Robin, M.; Lorquin, J. New insights and advances on pyomelanin production: From microbial synthesis to applications. J. Ind. Microbiol. Biotechnol. 2022, 49, kuac013. [Google Scholar] [CrossRef]
- Sharma, N.; Shekhar, P.; Kumar, V.; Kaur, H.; Jayasena, V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J. Basic Microbiol. 2024, 64, 4–21. [Google Scholar] [CrossRef]
- Tsouko, E.; Tolia, E.; Sarris, D. Microbial melanin: Renewable feedstock and emerging applications in food-related systems. Sustainability 2023, 15, 7516. [Google Scholar] [CrossRef]
- Ben Tahar, I.; Kus-Liśkiewicz, M.; Lara, Y.; Javaux, E.; Fickers, P. Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica. Biotechnol. Prog. 2020, 36, e2912. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhan, D.N.; Mazhari, B.B.Z.; Dastager, S.G.; Agsar, D. Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BioMed Res. Int. 2014, 2014, 306895. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Muñoz, V.H.; Cabrera-Valladares, N.; Bolívar, F.; Gosset, G.; Martínez, A. Optimum melanin production using recombinant Escherichia coli. J. Appl. Microbiol. 2006, 101, 1002–1008. [Google Scholar] [CrossRef]
- Tran-Ly, A.N.; Reyes, C.; Schwarze, F.W.; Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol. 2020, 36, 170. [Google Scholar] [CrossRef]
- Gao, Z.F.; Wang, X.Y.; Gao, J.B.; Xia, F. Rapid preparation of polydopamine coating as a multifunctional hair dye. RSC Adv. 2019, 9, 20492–20496. [Google Scholar] [CrossRef]
- Mavridi-Printezi, A.; Guernelli, M.; Menichetti, A.; Montalti, M. Bio-applications of multifunctional melanin nanoparticles: From nanomedicine to nanocosmetics. Nanomaterials 2020, 10, 2276. [Google Scholar] [CrossRef]
- Trindade, J.R.; Freire, M.G.; Amaral, P.F.; Coelho, M.A.Z.; Coutinho, J.A.; Marrucho, I.M. Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids Surf. A Physicochem. Eng. Asp. 2008, 324, 149–154. [Google Scholar] [CrossRef]
- dos Santos, F.F.; de Freitas, K.M.L.; Pereira, A.d.S.; Fontes-Sant’ana, G.C.; da Rocha-Leão, M.H.M.; Amaral, P.F.F. Butter whey and corn steep liquor as sole raw materials to obtain a bioemulsifier from Yarrowia lipolytica for food oil-in-water emulsions. Ciênc. Rural 2021, 51, e20200323. [Google Scholar] [CrossRef]
- Cirigliano, M.C.; Carman, G.M. Isolation of a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1984, 48, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Cirigliano, M.C.; Carman, G.M. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846–850. [Google Scholar] [CrossRef]
- Amaral, P.F.F.; Da Silva, J.M.; Lehocky, B.M.; Barros-Timmons, A.M.V.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A.P. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. [Google Scholar] [CrossRef]
- Eszterbauer, E.; Németh, Á. Investigations for a Yarrowia-Based Biorefinery: In Vitro Proof-of-Concept for Manufacturing Sweetener, Cosmetic Ingredient, and Bioemulsifier. Fermentation 2023, 9, 793. [Google Scholar] [CrossRef]
- Rakicka, M.; Rukowicz, B.; Rywińska, A.; Lazar, Z.; Rymowicz, W. Technology of efficient continuous erythritol production from glycerol. J. Clean. Prod. 2016, 139, 905–913. [Google Scholar] [CrossRef]
- Sipiczki, G.; Eszterbauer, E.; Nagy, E.S.; Kiss, Z.; Bujna, E. Yarrowia törzsek pigmenttermelésének vizsgálata. Elelm. Tud. Technol. 2022, 72, 68–71. [Google Scholar]
- Tóth, P.; Németh, Á. Investigation and Characterisation of New Eco-Friendly Cosmetic Ingredients Based on Probiotic Bacteria Ferment Filtrates in Combination with Alginite Mineral. Processes 2022, 10, 2672. [Google Scholar] [CrossRef]
- Czinkóczky, R.; Németh, Á. The effect of pH on biosurfactant production by Bacillus subtilis DSM10. Hung. J. Ind. Chem. 2020, 48, 37–43. [Google Scholar] [CrossRef]
- Yang, L.B.; Zhan, X.B.; Zhu, L.; Gao, M.J.; Lin, C.C. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol. Prep. Biochem. Biotechnol. 2016, 46, 376–383. [Google Scholar] [CrossRef]
- Tomaszewska-Hetman, L.; Rywińska, A. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: Effect of osmotic pressure. Chem. Pap. 2016, 70, 272–283. [Google Scholar] [CrossRef]
- Ribeiro, A.M.M. Erythritol Production from Crude Glycerol by Yarrowia Species: Strains Comparison and Oxygen Influence. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2021. Available online: https://hdl.handle.net/1822/71303 (accessed on 31 July 2023).
- Machado, A.R.A. Production of the Sweetener Erythritol by Yarrowia lipolytica Strains. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2018. Available online: https://hdl.handle.net/1822/59234 (accessed on 31 July 2023).
- Klimek-Ochab, M.; Brzezińska-Rodak, M.; Żymańczyk-Duda, E.; Lejczak, B.; Kafarski, P. Comparative study of fungal cell disruption—Scope and limitations of the methods. Folia Microbiol. 2011, 56, 469–475. [Google Scholar] [CrossRef]





| Wild-Type Strains | Titer | References |
| Y. lipolytica W29 | 0.5 mg/mL | [30] |
| Streptomyces lusitanus DMZ-3 | 0.264 g/L soluble 5.29 g/L insoluble | [31] |
| Pseudomonas aeruginosa | 1.79 g/L soluble 1.22 g/L insoluble | [23] |
| Halomonas titanicae | 0.55 g/L | [27] |
| Mutant Strains | Titer | References |
| Y. lipolytica | 4.5 g/L | [20] |
| E.coli W3110 | 6 g/L | [32] |
| Pseudomonas putida F6-HDO | 0.35 g/L | [26] |
| Inoculation Rate (%) | Final Erythritol (g/L) | Final Mannitol (g/L) | Residual Glycerol (g/L) | Initial Osmolarity (mOsmol/kg) | Final Biomass (g/L) | YEry (%) | Productivity (g/L)/h |
|---|---|---|---|---|---|---|---|
| 5 | 47.33 ± 0.68 | 2.27 ± 0.05 | 4.91 ± 0.19 | 4300 ± 31 | 33.5 ± 3.54 | 20.46 b ± 0.44 | 0.219 b ± 0.003 |
| 10 | 47.45 ± 1.42 | 2.61 ± 0.43 | 14.33 ± 0.43 | 4376 ± 298 | 31.88 ± 1.95 | 28.59 c ± 1.28 | 0.30 c ± 0.038 |
| 15 | 67.9 ± 6.0 | 3.2 ± 1.1 | 4.76 ± 5.2 | 3896 ± 140 | 67.33 ± 4 | 40.49 a ± 3.48 | 0.46 a ± 0.023 |
| 20 | 77.39 ± 3.83 | 4.34 ± 0.18 | 12.39 ± 0.49 | 4565 ± 245 | 51 ± 7.07 | 41.64 a ± 5.61 | 0.431 a ± 0.019 |
| 25 | 54.49 ± 6.11 | 3.44 ± 0.45 | 2.48 ± 0.68 | 4457 ± 150 | 45.11 ± 2.14 | 28.74 d ± 2.09 | 0.37 d ± 0.042 |
| Parameters | 5% | 10% | 15% | 20% | 25% | |
|---|---|---|---|---|---|---|
| Stage | Stage (h) | 23.11 | 14.66 | 6.08 | 0.29 | 10.51 |
| I. | µm1 (1/h) | 0 | 0 | 0.040 | 0.52 | 8.28 × 10−5 |
| Ki1 (g/L) | 474,44 | 0.15 | 11.12 | 4.91 | 314.13 | |
| YX/S1 (g/g) | 0.591 | 0.001 | 0.25 | 0.054 | 0.001 | |
| m1 (1/h) | 0.706 | 0.499 | 0.15 | 0 | 0.096 | |
| II. | µm2 (1/h) | 0.05 | 0.038 | 0.054 | 0.029 | 0.039 |
| xm2 (g/L) | 32.94 | 21.79 | 68.13 | 52.55 | 33.72 | |
| alpha2 | 0.449 | 1.032 | 0.348 | 0 | 0 | |
| beta2 | 0.039 | 0.058 | 0.107 | 0.069 | 0.039 | |
| Ksp2 (g/L) | 0.032 | 94.64 | 33.024 | 156.37 | 32.46 | |
| Kip2 (g/L) | 23.31 | 279.049 | 6.88 | 303.25 | 184.21 | |
| YX/S2 (g/g) | 0.623 | 0.263 | 0.95 | 0.997 | 0.364 | |
| YP/S2 (g/g) | 0.315 | 0.552 | 0.97 | 1.115 | 0.481 | |
| m2 (1/h) | 0.0063 | 0 | 0 | 0.017 | 0.0022 | |
| x (g/L) | 0.7 | 1.45 | 7.5 | 4.39 | 4.36 | |
| S (g/L) | 236 | 180.46 | 160 | 205 | 191 | |
| P (g/L) | 0 | 0.18 | 0.18 | 0 | 0 |
| Cell No. | Inoculation Rate (%) | {1} 0.6633 | {2} 4.1067 | {3} 4.2167 |
|---|---|---|---|---|
| 1 | 10 | 0.023049 | 0.020134 | |
| 2 | 15 | 0.023049 | 0.992337 | |
| 3 | 25 | 0.020134 | 0.992337 |
| Inoculation Rate (%) | Optical Density (600 nm) | Pigment (400 nm) | Pigment (mg/L) |
|---|---|---|---|
| 5 | 12.43 ± 0.7 | 2.77 ± 0.18 | 18.12 ± 1.68 |
| 10 | 12.18 ± 0.43 | 5.46 ± 2.11 | 30.96 ± 0.009 |
| 15 | 11.53 ± 1.3 | 1.35 ± 0.7 | 61.81 ± 0.02 |
| 20 | 11.61 ± 0.87 | 1.86 ± 0.004 | 11.52 ± 3.4 |
| 25 | 14.52 ± 1.09 | 1.65 ± 0.6 | 55.48 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Eszterbauer, E.; Németh, Á. Combining Different Yarrowia divulgata Yeast-Based Fermentations into an Integrated Bioprocess for Manufacturing Pigment, Sweetener, Bioemulsifier, and Skin Moisturiser. Appl. Sci. 2026, 16, 1445. https://doi.org/10.3390/app16031445
Eszterbauer E, Németh Á. Combining Different Yarrowia divulgata Yeast-Based Fermentations into an Integrated Bioprocess for Manufacturing Pigment, Sweetener, Bioemulsifier, and Skin Moisturiser. Applied Sciences. 2026; 16(3):1445. https://doi.org/10.3390/app16031445
Chicago/Turabian StyleEszterbauer, Edina, and Áron Németh. 2026. "Combining Different Yarrowia divulgata Yeast-Based Fermentations into an Integrated Bioprocess for Manufacturing Pigment, Sweetener, Bioemulsifier, and Skin Moisturiser" Applied Sciences 16, no. 3: 1445. https://doi.org/10.3390/app16031445
APA StyleEszterbauer, E., & Németh, Á. (2026). Combining Different Yarrowia divulgata Yeast-Based Fermentations into an Integrated Bioprocess for Manufacturing Pigment, Sweetener, Bioemulsifier, and Skin Moisturiser. Applied Sciences, 16(3), 1445. https://doi.org/10.3390/app16031445

