Data-Driven Estimation of Cerchar Abrasivity Index Using Rock Geomechanical and Mineralogical Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Preparation
2.2. Exploratory Data Analysis and Preprocessing
2.3. Feature Selection Strategy
2.4. Symbolic Regression Analysis
2.5. Model Framework and Evaluation Strategy
3. Results
3.1. Establishment and Optimization of Base Models
3.2. Optimization of Feature Subsets via Full Scenario Analysis
3.3. Prediction Accuracy of the Optimal Model
3.4. Symbolic Regression Model
3.5. Physical Interpretation of the Optimal Model (SHAP Analysis)
4. Discussion
4.1. Efficacy of Data-Driven Feature Selection
4.2. Physical Interpretation of Key Predictors
4.3. Performance of Ensemble Learning Models
4.4. Comparative Advantage over Prior ML Studies
4.5. Comparison of Machine Learning and Symbolic Regression Approaches
4.6. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Thuro, K.; Song, Z.; Dang, W.; Bai, Q. Cerchar abrasivity test and its applications in rock engineering: A review. Int. J. Coal Sci. Technol. 2025, 12, 13. [Google Scholar] [CrossRef]
- Ko, T.Y.; Kim, T.K.; Son, Y.; Jeon, S. Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling. Tunn. Undergr. Space Technol. 2016, 57, 99–111. [Google Scholar] [CrossRef]
- Rostami, J. Hard rock TBM cutterhead modeling for design and performance prediction. Geomech. Tunn. 2008, 1, 18–28. [Google Scholar] [CrossRef]
- Alber, M.; Bruland, A.; Dahl, F.; Grima, M.A.; Käsling, H.; Michalakopoulos, T.N. ISRM Suggested Method for Determining the Abrasivity of Rock by the CERCHAR Abrasivity Test. Rock Mech. Rock Eng. 2014, 47, 261–266. [Google Scholar] [CrossRef]
- Käsling, H.; Thuro, K. Determining rock abrasivity in the laboratory. In Proceedings of the ISRM EUROCK 2010, Lausanne, Switzerland, 15–18 June 2010. [Google Scholar]
- Gao, K.; Wang, X.; Wei, H.; Zhu, T.; Zhang, Z. Abrasivity Database of Different Genetic Rocks Based on CERCHAR Abrasivity Test. Sci. Data 2024, 11, 630. [Google Scholar] [CrossRef]
- Moradizadeh, M.; Cheshomi, A.; Ghafoori, M.; TrighAzali, S. Correlation of equivalent quartz content, Slake durability index and Is50 with Cerchar abrasiveness index for different types of rock. Int. J. Rock Mech. Min. Sci. 2016, 86, 42–47. [Google Scholar] [CrossRef]
- Heydarian, P.; Asef, M.R.; Hamidi, J.K.; Talkhablo, M. The relationship between mechanical properties and mineralogical composition of some sedimentary rocks. Q. J. Eng. Geol. Hydrogeol. 2024, 57, qjegh2024-069. [Google Scholar] [CrossRef]
- Majeed, Y.; Abu Bakar, M.Z. A study to correlate LCPC rock abrasivity test results with petrographic and geomechanical rock properties. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 365–378. [Google Scholar] [CrossRef]
- Er, S.; Tuğrul, A. Correlation of physico-mechanical properties of granitic rocks with Cerchar Abrasivity Index in Turkey. Measurement 2016, 91, 114–123. [Google Scholar] [CrossRef]
- Wani, S.R.; Teshnizi, E.S.; Jalota, S. Correlation between Cerchar abrasivity index and geotechnical properties of igneous rocks: A comprehensive analysis using machine learning algorithms and interpretative analysis. Measurement 2026, 257, 118989. [Google Scholar] [CrossRef]
- Zhang, S.-R.; She, L.; Wang, C.; Wang, Y.-J.; Cao, R.-L.; Li, Y.-L.; Cao, K.-L. Investigation on the relationship among the Cerchar abrasivity index, drilling parameters and physical and mechanical properties of the rock. Tunn. Undergr. Space Technol. 2021, 112, 103907. [Google Scholar] [CrossRef]
- Majeed, Y.; Abu Bakar, M.Z.; Butt, I.A. Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties. Bull. Eng. Geol. Environ. 2020, 79, 767–784. [Google Scholar] [CrossRef]
- Aligholi, S.; Lashkaripour, G.R.; Ghafoori, M.; Azali, A. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks. Rock Mech. Rock Eng. 2017, 50, 2929–2953. [Google Scholar] [CrossRef]
- Alber, M. Stress dependency of the Cerchar abrasivity index (CAI) and its effects on wear of selected rock cutting tools. Tunn. Undergr. Space Technol. 2008, 23, 351–359. [Google Scholar] [CrossRef]
- Abu Bakar, M.Z.; Majeed, Y.; Rostami, J. Effects of rock water content on CERCHAR Abrasivity Index. Rock Mech. Rock Eng. 2016, 49, 3745–3758. [Google Scholar] [CrossRef]
- Majeed, Y.; Abu Bakar, M.Z. Effects of variation in the particle size of the rock abrasion powder and standard rotational speed on the NTNU/SINTEF abrasion value steel test. Bull. Eng. Geol. Environ. 2019, 78, 1537–1554. [Google Scholar] [CrossRef]
- Ündül, Ö.; Er, S. Investigating the effects of micro-texture and geo-mechanical properties on the abrasiveness of volcanic rocks. Eng. Geol. 2017, 229, 85–94. [Google Scholar] [CrossRef]
- Meng, F.; Wong, L.N.Y.; Zhou, H. Rock brittleness indices and their applications to different fields of rock engineering: A review. J. Rock Mech. Geotech. Eng. 2021, 13, 221–247. [Google Scholar] [CrossRef]
- Plinninger, R.J.; Käsling, H.; Thuro, K. Wear prediction in hard rock excavation using the CERCHAR Abrasiveness Index (CAI). In Proceedings of the EUROCK 2004 and 53rd Geomechanics Colloquium, Salzburg, Austria, 7–9 October 2004; Schubert, W., Ed.; VGE Verlag GmbH: Essen, Germany, 2004; pp. 599–604. [Google Scholar]
- Sun, J.; Fan, X.; Wang, H.; Shang, Y.; Sun, C. New Prediction Model of Rock Cerchar Abrasivity Index Based on Gene Expression Programming. Appl. Sci. 2025, 15, 10901. [Google Scholar] [CrossRef]
- Kwak, N.-S.; Ko, T.Y. Machine learning-based regression analysis for estimating Cerchar abrasivity index. Geomech. Eng. 2022, 29, 219–228. [Google Scholar]
- Hong, J.-P.; Kang, Y.S.; Ko, T.Y. Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning. J. Korean Tunn. Undergr. Space Assoc. 2024, 26, 39–58. [Google Scholar]
- Tripathy, A.; Singh, T.N.; Kundu, J. Prediction of abrasiveness index of some Indian rocks using soft computing methods. Measurement 2015, 68, 302–309. [Google Scholar] [CrossRef]
- Capik, M.; Yilmaz, A.O. Modeling of Micro Deval abrasion loss based on some rock properties. J. Afr. Earth Sci. 2017, 134, 549–556. [Google Scholar] [CrossRef]
- Ozdogan, M.V.; Deliormanli, A.H.; Yenice, H. The correlations between the Cerchar abrasivity index and the geomechanical properties of building stones. Arab. J. Geosci. 2018, 11, 604. [Google Scholar] [CrossRef]
- Kadkhodaei, M.H.; Ghasemi, E. Development of a GEP model to assess CERCHAR abrasivity index of rocks based on geomechanical properties. J. Min. Environ. 2019, 10, 917–928. [Google Scholar]
- Teymen, A. The usability of Cerchar abrasivity index for the estimation of mechanical rock properties. Int. J. Rock Mech. Min. Sci. 2020, 128, 104258. [Google Scholar] [CrossRef]
- Majeed, Y.; Abu Bakar, M.Z. Statistical evaluation of CERCHAR Abrasivity Index (CAI) measurement methods and dependence on petrographic and mechanical properties of selected rocks of Pakistan. Bull. Eng. Geol. Environ. 2016, 75, 1341–1360. [Google Scholar] [CrossRef]
- Lee, S.; Jung, H.-Y.; Jeon, S. Determination of Rock Abrasiveness using Cerchar Abrasiveness Test. Tunn. Undergr. Space 2012, 22, 284–295. [Google Scholar] [CrossRef]
- Eide, L.N.R. TBM Tunnelling at the Stillwater Mine. Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2014. [Google Scholar]
- Macias, F.J. Hard Rock Tunnel Boring: Performance Predictions and Cutter Life Assessments. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2016. [Google Scholar]
- Macias, F.J.; Dahl, F.; Bruland, A. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT). Rock Mech. Rock Eng. 2016, 49, 1679–1693. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS’18), Montréal, QC, Canada, 3–8 December 2018; pp. 6639–6649. [Google Scholar]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- TuringBot. Ver. 3.1.4. Symbolic Regression Software, TuringBot Software: São Paulo, Brazil, 2020. Available online: https://turingbotsoftware.com/ (accessed on 10 November 2025).
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19), Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Lin, S.; Liang, Z.; Zhao, S.; Dong, M.; Guo, H.; Zheng, H. A Comprehensive Evaluation of Ensemble Machine Learning in Geotechnical Stability Analysis and Explainability. Int. J. Mech. Mater. Des. 2024, 20, 331–352. [Google Scholar] [CrossRef]
- Baghbani, A.; Choudhury, T.; Costa, S.; Reiner, J. Application of Artificial Intelligence in Geotechnical Engineering: A State-of-the-Art Review. Earth-Sci. Rev. 2022, 228, 103991. [Google Scholar] [CrossRef]
- Saadati, G.; Javankhoshdel, S.; Mohebbi Najm Abad, J.; Mett, M.; Kontrus, H.; Schneider-Muntau, B. AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices. Rock Mech. Rock Eng. 2025, 58, 11319–11349. [Google Scholar] [CrossRef]
- Di Giovanni, A.; Rispoli, A.; Ferrero, A.M.; Farinetti, A.; Cardu, M. A statistical approach for the correlation between Cerchar Abrasivity Index and Uniaxial Compressive Strength of rocks. Geomech. Tunn. 2023, 16, 378–386. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Murthy, V.M.S.R.; Chattopadhyaya, S.; Raina, A.K. Prediction of TBM Disc Cutter Wear and Penetration Rate in Tunneling Through Hard and Abrasive Rock Using Multi-Layer Shallow Neural Network and Response Surface Methods. Rock Mech. Rock Eng. 2022, 55, 3489–3506. [Google Scholar] [CrossRef]
- Kwon, K.; Choi, H.; Jung, J.; Kim, D.; Shin, Y.J. Prediction of Abnormal TBM Disc Cutter Wear in Mixed Ground Condition Using Interpretable Machine Learning with Data Augmentation. J. Rock Mech. Geotech. Eng. 2025, 17, 2059–2071. [Google Scholar] [CrossRef]









| Algorithm | Status | CV R2 | Final Test R2 | RMSE | Optimal Hyperparameters |
|---|---|---|---|---|---|
| CatBoost | Baseline | 0.738 | 0.871 | 0.489 | Default Settings |
| Tuned | 0.763 | 0.875 | 0.477 | iter: 800, depth: 8, lr: 0.08, l2_leaf_reg: 3.5 | |
| Random Forest | Baseline | 0.741 | 0.882 | 0.465 | Default Settings |
| Tuned | 0.752 | 0.898 | 0.440 | n_est: 500, max_depth: 15, min_samples_split: 5 | |
| Gradient Boosting | Baseline | 0.725 | 0.865 | 0.495 | Default Settings |
| Tuned | 0.734 | 0.874 | 0.488 | n_est: 300, max_depth: 5, lr: 0.1, subsample: 0.8 |
| Rank | Model | CV R2 | Final Test R2 | RMSE | Nfeat | Feature List |
|---|---|---|---|---|---|---|
| 1 | CatBoost | 0.777 | 0.907 | 0.420 | 4 | B1, density, EQC, UCS |
| 2 | CatBoost | 0.777 | 0.905 | 0.425 | 4 | B2, B4, density, EQC |
| 3 | CatBoost | 0.778 | 0.898 | 0.440 | 4 | B1, B4, density, EQC |
| 4 | CatBoost | 0.775 | 0.902 | 0.431 | 4 | B1, BTS, density, EQC |
| 5 | CatBoost | 0.770 | 0.912 | 0.407 | 6 | B1, B2, BTS, density, EQC, UCS |
| 6 | CatBoost | 0.770 | 0.905 | 0.424 | 5 | B1, B3, B4, density, EQC |
| 7 | RandomForest | 0.760 | 0.890 | 0.455 | 5 | B1, B4, density, EQC, RAI |
| 8 | RandomForest | 0.753 | 0.896 | 0.444 | 5 | B1, BTS, density, EQC, RAI |
| 9 | CatBoost | 0.771 | 0.907 | 0.420 | 5 | B1, B3, density, EQC, UCS |
| 10 | CatBoost | 0.777 | 0.895 | 0.445 | 6 | B1, B2, B3, density, EQC, UCS |
| N | Model | CV R2 | Final Test R2 | RMSE | Feature List |
|---|---|---|---|---|---|
| 1 | RandomForest | 0.592 | 0.801 | 0.613 | density |
| 2 | RandomForest | 0.670 | 0.882 | 0.472 | B1, RAI |
| 3 | RandomForest | 0.752 | 0.891 | 0.453 | B1, density, RAI |
| 4 | CatBoost | 0.777 | 0.907 | 0.420 | B1, density, EQC, UCS |
| 5 | CatBoost | 0.772 | 0.905 | 0.424 | B1, B3, B4, density, EQC |
| 6 | CatBoost | 0.770 | 0.912 | 0.407 | B1, B2, BTS, density, EQC, UCS |
| 7 | CatBoost | 0.783 | 0.886 | 0.463 | B1, B2, B3, BTS, density, EQC, RAI |
| Coefficient | Value | Coefficient | Value |
|---|---|---|---|
| α0 | −2.7428 | γ1 | 1.8681 |
| α1 | 1.9224 | γ2 | −14.7198 |
| α2 | 0.9852 | γ3 | −1.0535 |
| β1 | −0.0707 | γ4 | 0.0752 |
| β2 | −1.1617 | γ5 | 9.4508 |
| γ6 | 0.00166 | ||
| γ7 | 4.9859 |
| Study (Reference) | Algorithm | Dataset Characteristics | Key Inputs/Approach | Limitations & Remarks |
|---|---|---|---|---|
| Tripathy et al. [24] | Soft Computing (ANN) | N = 105 (India) | UCS, PLI, E, Vp | Used “Black-box” ANN model; Good accuracy (R2 = 0.97) |
| Capik and Yilmaz [25] | Simple & Multiple Regression | N = 41 (Turkey) | UCS, BTS, Is50, Porosity, Schmidt Hardness | Focused on Micro Deval Abrasion Loss (MDAL)-CAI correlations; Limited sample size |
| Ozdogan et al. [26] | Multiple Regression | N = 30 (Building stones) | UCS, Porosity, Shore Hardness | Very small sample size; Restricted to specific stone type |
| Kadkhodaei and Ghasemi [27] | Gene Expression Programming (GEP) | N = 106 (Compiled) | RAI, BTS | Evolutionary algorithm offers explicit equations but is computationally expensive |
| Teymen [28] | Multiple Regression | N = 80 (Turkey) | CAI, UCS, E, BTS, Is50, ROP, BPI | Focus on estimating properties from CAI |
| This Study | CatBoost (Ensemble) | N = 193 (Compiled) | B1, Density, EQC, UCS | Rigorous VIF selection; High generalization due to diverse data. |
| Model | Numerical Variables | Rock Type | Test R2 | RMSE | Interpretability |
|---|---|---|---|---|---|
| CatBoost | 4 (B1, density, EQC, UCS) | Required | 0.907 | 0.420 | Black-box |
| Symbolic Regression | 3 (density, EQC, B1) | Not required | 0.720 | 0.728 | Explicit equation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, S.-W.; Ko, T.Y. Data-Driven Estimation of Cerchar Abrasivity Index Using Rock Geomechanical and Mineralogical Characteristics. Appl. Sci. 2026, 16, 552. https://doi.org/10.3390/app16010552
Choi S-W, Ko TY. Data-Driven Estimation of Cerchar Abrasivity Index Using Rock Geomechanical and Mineralogical Characteristics. Applied Sciences. 2026; 16(1):552. https://doi.org/10.3390/app16010552
Chicago/Turabian StyleChoi, Soon-Wook, and Tae Young Ko. 2026. "Data-Driven Estimation of Cerchar Abrasivity Index Using Rock Geomechanical and Mineralogical Characteristics" Applied Sciences 16, no. 1: 552. https://doi.org/10.3390/app16010552
APA StyleChoi, S.-W., & Ko, T. Y. (2026). Data-Driven Estimation of Cerchar Abrasivity Index Using Rock Geomechanical and Mineralogical Characteristics. Applied Sciences, 16(1), 552. https://doi.org/10.3390/app16010552

