Improved Attendance Tracking System for Coffee Farm Workers Applying Computer Vision
Abstract
1. Introduction
2. Research Background
2.1. Farm Workers Attendance Monitoring System
2.2. Face Recognition Technology Functions of the Attendance Tracking System
3. Research Model and Experiment Setup
3.1. Research Model Design
3.2. Face Recognition Procedure
3.2.1. Face Detection
3.2.2. Face Recognition
3.3. Designed Functions
3.4. Research Environment
4. Implementation Results and Discussion
4.1. Face Dataset and Recognition Pipeline
4.2. Attendance Tracking Mobile Phone Application for Coffee Farm Workers
4.3. Evaluation Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Input: Input image needs to be recognized input_image Farm worker database contains pre-registered feature vectors and labels farmworker_database Output: Label of the person being identified or new record woker_identity Confidence of the identification result confidence_score 1. PREPROCESS INPUT IMAGE img_pixels = image.img_to_array(input_image) img_pixels = np.expand_dims(img_pixels, axis = 0) img_pixels = normalize_pixels(img_pixels) 2. FACE DETECTION AND ALIGNMENT mtcnn_detector = MTCNN() detections = mtcnn_detector.detect_faces(img_pixels) IF len(detections) == 0 THEN RETURN “No face detected”, 0.0 main_face = detections[0] FOR detection IN detections: IF detection[‘confidence’] > main_face[‘confidence’] THEN main_face = detection bbox = main_face[‘box’] # [x, y, width, height] landmarks = main_face[‘keypoints’] # {‘left_eye’: (x,y), ‘right_eye’: (x,y), …} aligned_face = align_face_using_landmarks(img_pixels, landmarks, image_size = 112) 3. EXTRACT FACE EMBEDDING aligned_face = aligned_face.astype(np.float32) aligned_face = (aligned_face − 127.5)/128.0 # Normalization cho InsightFace aligned_face = np.expand_dims(aligned_face, axis = 0) face_embedding = insightface_model.predict(aligned_face) face_embedding = face_embedding/np.linalg.norm(face_embedding) face_embedding = np.squeeze(face_embedding) 4. FACE MATCHING WITH DATABASE best_similarity = −1.0 best_match_label = “ unknown” FOR EACH (stored_embedding, label) IN database: similarity = np.dot(face_embedding, stored_embedding)/( np.linalg.norm(face_embedding) * np.linalg.norm(stored_embedding) ) IF similarity > best_similarity THEN best_similarity = similarity best_match_label = label 5. VERIFICATION WITH THRESHOLD threshold = 0.8 IF best_similarity >= threshold THEN identity = best_match_label confidence_score = best_similarity ELSE identity = “unknown” confidence_score = best_similarity 6. RETURN RESULT RETURN identity, confidence_score list_label.append(folder) |
References
- Vegro, C.L.R.; de Almeida, L.F. Global coffee market: Socio-economic and cultural dynamics. In Coffee Consumption and Industry Strategies in Brazil; Woodhead Publishing: Cambridge, UK, 2020; pp. 3–19. [Google Scholar]
- Reddy, R. Innovations in agricultural machinery: Assessing the impact of advanced technologies on farm efficiency. J. Artif. Intell. Big Data 2022, 2, 64–83. [Google Scholar] [CrossRef]
- Karas, J.; Skýpalová, R.; Tomšík, P. Human capital in agriculture: Barriers to industry 4.0. Ad Alta J. Interdiscip. Res. 2022, 12, 298–301. [Google Scholar]
- Fernando, M.P.A.S.; Silva, K.N.N. An Analysis of the Application of Human Resource Management (HRM) Practices in Agricultural Farms: Perception of Farm Employees. Proc. Int. Conf. Bus. Manag. 2021, 18, 1–21. [Google Scholar] [CrossRef]
- Qorri, D.; Szabó, E.P.; Felföldi, J.; Kovács, K. The role of human resource management in agricultural labor-saving technologies: An integrative review and science mapping. Agriculture 2024, 14, 1144. [Google Scholar] [CrossRef]
- Garg, V.; Singhal, A.; Tiwari, P. A Study on Transformation in Technological Based Biometrics Attendance System: Human Resource Management Practice. In Proceedings of the 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 11–12 January 2018; pp. 809–813. [Google Scholar] [CrossRef]
- Lim, J.C.; Kasim, N.; Zainal, R.; Musa, S.M.S. Radio frequency identification (RFID) implementation for human tracking in safety management at construction site. Res. Manag. Technol. Bus. 2022, 3, 431–444. [Google Scholar]
- Sunny, Y.F.M.; Krishnan, N.F.M.; Taib, S.M.; Savita, K.S. Attendance System using Radio-Frequency Identification (RFID) Technology and Cloud-Based Services in Higher Education. In Proceedings of the 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 23–24 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Nguyen-Tat, B.-T.; Bui, M.-Q.; Ngo, V.M. Automating attendance management in human resources: A design science approach using computer vision and facial recognition. Int. J. Inf. Manag. Data Insights 2024, 4, 100253. [Google Scholar] [CrossRef]
- Painuly, K.; Bisht, Y.; Vaidya, H.; Kapruwan, A.; Gupta, R. Efficient Real-Time Face Recognition-Based Attendance System with Deep Learning Algorithms. In Proceedings of the 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, 24–25 January 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Ingalagi, S.S.; Mutkekar, R.R.; Kulkarni, P.M. Artificial Intelligence (AI) adaptation: Analysis of determinants among Small to Medium-sized Enterprises (SME’s). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1049, 012017. [Google Scholar] [CrossRef]
- Hansen, E.B.; Bogh, S. Artificial intelligence and internet of things in small and medium-sized enterprises: A survey. J. Manuf. Syst. 2021, 58, 362–372. [Google Scholar] [CrossRef]
- Dhillon, R.; Moncur, Q. Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Dayıoğlu, M.A.; Turker, U. Digital transformation for sustainable future-agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Seifedine, K.; Mohamad, S. Wireless attendance management system based on iris recognition. Sci. Res. Essays 2010, 5, 1428–1435. [Google Scholar]
- Boon, C.; Den Hartog, D.N.; Lepak, D.P. A systematic review of human resource management systems and their measurement. J. Manag. 2019, 45, 2498–2537. [Google Scholar] [CrossRef]
- Uddin, M.S.; Allayear, S.M.; Das, N.C.; Talukder, F.A. A location based time and attendance system. Int. J. Comput. Theory Eng. 2014, 6, 36. [Google Scholar] [CrossRef]
- Boateng, M.S.; Ofori, K. Impact Assessment of Biometric Fingerprint Application for Timekeeping at KNUST Library. J. Appl. Thought 2015, 4, 255–273. [Google Scholar]
- Nayak, A.; Satpathy, I.; Mishra, B.S.; Patnaik, B.C.M.; Das, B. Biometric A Helping Hand in Talent Management: A Modern Time Tracking Tool. In Proceedings of the 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), Bhubaneswar, India, 19–20 November 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Oyebola, B.O.; Olabisi, K.O.; Adewale, O.S. Fingerprint for personal identification: A developed system for students attendance information management. Am. J. Embed. Syst. Appl. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Okeke, H.S.; Afuye, T.; Abdulhamid, I.G. Implementation of an Intelligent Attendance System. In Proceedings of the 3rd International Conference, The Federal Polytechnic Ilaro, Ilaro, Nigeria, 16–17 August 2022; pp. 67–73. [Google Scholar]
- Hoo, S.C.; Ibrahim, H. Biometric-based attendance tracking system for education sectors: A literature survey on hardware requirements. J. Sens. 2019, 2019, 7410478. [Google Scholar] [CrossRef]
- Al-Waisy, A.S.; Qahwaji, R.; Ispon, S.; Al-Fahdawi, S.; Nagem, T.A.M. A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. 2018, 21, 783–802. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Dao, C.T.; Phan, N.M.T.; Nguyen, T.N.C.; Phan, T.T.; Pham, H.N. Automatic Attendance System Based on Face Recognition Using HOG Features and Cosine Distance. In Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications; Dang, T.K., Küng, J., Takizawa, M., Chung, T.M., Eds.; FDSE 2020; Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1306. [Google Scholar] [CrossRef]
- Tran, T. Automatic Attendance System in the Workplace Based on Face Recognition in Real-Time Using the Principal Component Analysis Method and Eigenface Technique. Bachelor’s Thesis, LAB University of Applied Sciences, Lahti, Finland, 2022. [Google Scholar]
- Pham, T.N.; Nguyen, V.H.; Huh, J.H. COVID-19 monitoring system: In-browser face mask detection application using deep learning. Multimed. Tools Appl. 2024, 83, 61943–61970. [Google Scholar] [CrossRef]
- S, R.; A, K.; R, A.; Kannan, C.K. Automatic Attendance Monitoring System Using LBPH and HAAR Algorithm. In Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; pp. 1604–1608. [Google Scholar] [CrossRef]
- Espinosa, S.K.K.; Paray, M.; Tanquiamco, D.; Jandayan, C.; Pamela, G.D. Analysis and Design of Employee Attendance Monitoring Using Face Recognition System for Archempress Fruit Corporation; SSRN: New York, NY, USA, 2020. [Google Scholar]
- Núñez, A.; Jácome, J.; Vaca, K.; Balseca, B.; Jara, R. Feasibility Enterprise Time and Attendance System Using Artificial Vision Based on Neural Networks with Python and Raspberry Pi. ESPOCH Congr. Ecuadorian J. STEAM 2024, 3, 72–84. [Google Scholar] [CrossRef]
- Thai, H.-D.; Seo, Y.-S.; Huh, J.-H. Enhanced Efficiency in SMEs Attendance Monitoring: Low Cost Artificial Intelligence Facial Recognition Mobile Application. IEEE Access 2024, 12, 184257–184274. [Google Scholar] [CrossRef]
- Johannah, J.J.; Tephillah, S. Intelligent Farmhouse Attendance Monitoring System Using Deep Learning. In Proceedings of the 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 25–26 May 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Thai, H.D.; Liu, Y.; Le, N.-B.-V.; Lee, D.; Huh, J.-H. Improved-Attendance-Tracking-System-for-Coffee-Farm-Workers-Applying-Computer-Vision. In Proceedings of the 58th Korea Institute of Information and Communication Engineering (KIICE) Fall Conference, Busan, Republic of Korea, 23–25 October 2025; pp. 1–3. [Google Scholar]
- Odewole, T.; Kadel, R. Smart Attendance System in an Enterprise-Based Access Point Environment. In Proceedings of the 2020 30th International Telecommunication Networks and Applications Conference (ITNAC), Melbourne, VIC, Australia, 25–27 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Fadel, N.E. Facial Recognition Algorithms: A Systematic Literature Review. J. Imaging 2025, 11, 58. [Google Scholar] [CrossRef]
- Hsu, R.-L.; Abdel-Mottaleb, M.; Jain, A. Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 696–706. [Google Scholar] [CrossRef]
- Jain, A.K.; Stan, Z.L. Handbook of Face Recognition; Springer: London, UK, 2011; Volume 1. [Google Scholar] [CrossRef]
- Zhao, W.; Chellappa, R.; Phillips, P.J.; Rosenfeld, A. Face recognition: A literature survey. ACM Comput. Surv. 2003, 35, 399–458. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhu, Y.; Zhang, C.; Zheng, Y. Face recognition based on multi-class SVM. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 5871–5873. [Google Scholar] [CrossRef]
- Gottumukkal, R.; Asari, V.K. An improved face recognition technique based on modular PCA approach. Pattern Recognit. Lett. 2004, 25, 429–436. [Google Scholar] [CrossRef]
- Kim, S.-K.; Park, Y.J.; Toh, K.-A.; Lee, S. SVM-based feature extraction for face recognition. Pattern Recognit. Lett. 2010, 43, 2871–2881. [Google Scholar] [CrossRef]
- Aljaafreh, A.; Lahloub, W.S.; Al-Awadat, M.S.; Al-Awawdeh, O.M. Real-Time Student Attendance System Using Face Recognition. In Intelligent Systems and Applications; Arai, K., Ed.; IntelliSys 2022; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; pp. 685–689. [Google Scholar] [CrossRef]
- Perlibakas, V. Distance measures for PCA-based face recognition. Pattern Recognit. Lett. 2004, 25, 711–724. [Google Scholar] [CrossRef]
- Yang, M.-H. Face recognition using kernel methods. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001; Volume 14, pp. 1–8. [Google Scholar]
- Kurutach, W.; Fooprateepsiri, R.; Phoomvuthisarn, S. A highly robust approach face recognition using hausdorff-trace transformation. In Neural Information Processing. Models and Applications; Wong, K.W., Mendis, B.S.U., Bouzerdoum, A., Eds.; ICONIP 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6444, pp. 549–556. [Google Scholar] [CrossRef]
- Meena, K.; Swaminathan, J.N.; Rajendiran, T.; Sureshkumar, S.; Mohamed Imtiaz, N. An Automated Attendance System Through Multiple Face Detection and Recognition Methods. In Innovative Data Communication Technologies and Application; Raj, J.S., Kamel, K., Lafata, P., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2022; Volume 96, pp. 225–234. [Google Scholar] [CrossRef]
- Munlin, M. Time Attendance Using FELE Face Identification Algorithms. In Proceedings of the 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE), Alanya, Turkey, 29–31 March 2022; pp. 325–329. [Google Scholar] [CrossRef]
- Kakarla, S.; Gangula, P.; Rahul, M.S.; Singh, C.S.C.; Sarma, T.H. Smart Attendance Management System Based on Face Recognition Using CNN. In Proceedings of the 2020 IEEE-HYDCON, Hyderabad, India, 11–12 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sultan, H.; Zafar, M.H.; Anwer, S.; Waris, A.; Ijaz, H.; Sarwar, M. Real Time Face Recognition Based Attendance System For University Classroom. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence (ICAI), Islamabad, Pakistan, 30–31 March 2022; pp. 165–168. [Google Scholar] [CrossRef]
- Vaidya, A.; Tyagi, V.; Sharma, S. FRAMS: Facial Recognition Attendance Management System. In Advances in Computing and Data Sciences; Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Eds.; ICACDS 2022; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2022; Volume 1613, pp. 388–398. [Google Scholar] [CrossRef]
- Mohamed, R.; Jafni, J.U.; Rum, S.N.M. Real-Time Face Recognition System in Smart Classroom using Haar Cascade and Local Binary Pattern Model. In Proceedings of the 2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS), Bandung, Indonesia, 23 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699. [Google Scholar]
- Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. Magface: A universal representation for face recognition and quality assessment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14225–14234. [Google Scholar]
- Kumar, V.; Yadav, A.; Rai, A.; Narwaria, M. Robust Face Recognition via Adaptive Thresholding and Multiple InsightFace Architectures on Customized Datasets. In Proceedings of the 2025 International Conference on Intelligent Computing and Knowledge Extraction (ICICKE), Bengaluru, India, 6–7 June 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Thai, H.D.; Liu, Y.; Le, N.-B.-V.; Lee, D.; Huh, J.-H. Improved-Attendance-Tracking-System-for-Coffee-Farm-Workers-Applying-Computer-Vision. Available online: https://github.com/thaihongdanhh/Improved-Attendance-Tracking-System-for-Coffee-Farm-Workers-Applying-Computer-Vision/tree/main (accessed on 10 October 2025).









| Function | Description |
|---|---|
| Real-Time Attendance Monitoring |
|
| Geolocation Tracking |
|
| Attendance History |
|
| Report Generation |
|
| User Authentication |
|
| Processor | AMD® Ryzen 7 5800 × 8-core processor × 16 |
| Operating System | Ubuntu 20.04.5 LTS |
| RAM | 128 GB RAM |
| GPU | NVIDIA GeForce RTX 3080 Ti 12 GB |
| GPU Accelerator | CUDA Version 12.5 |
| Metric | Manual Method | Proposed |
|---|---|---|
| Attendance check time (per worker) | 10–30 s | <1 s |
| Identity fraud vulnerability | High (manually recording/visual only) | Eliminated (biometric) |
| Real-time data synchronization | Not available | Available |
| Report Generation | Not available | Available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Thai, H.-D.; Liu, Y.; Le, N.-B.-V.; Lee, D.; Huh, J.-H. Improved Attendance Tracking System for Coffee Farm Workers Applying Computer Vision. Appl. Sci. 2026, 16, 319. https://doi.org/10.3390/app16010319
Thai H-D, Liu Y, Le N-B-V, Lee D, Huh J-H. Improved Attendance Tracking System for Coffee Farm Workers Applying Computer Vision. Applied Sciences. 2026; 16(1):319. https://doi.org/10.3390/app16010319
Chicago/Turabian StyleThai, Hong-Danh, YuanYuan Liu, Ngoc-Bao-Van Le, Daesung Lee, and Jun-Ho Huh. 2026. "Improved Attendance Tracking System for Coffee Farm Workers Applying Computer Vision" Applied Sciences 16, no. 1: 319. https://doi.org/10.3390/app16010319
APA StyleThai, H.-D., Liu, Y., Le, N.-B.-V., Lee, D., & Huh, J.-H. (2026). Improved Attendance Tracking System for Coffee Farm Workers Applying Computer Vision. Applied Sciences, 16(1), 319. https://doi.org/10.3390/app16010319

