Detection of Welding Defects Using the YOLOv8-ELA Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. YOLOv8-ELA Model Architecture
2.2. HS-FPN Feature Fusion Module
2.3. ELA Mechanism
2.4. SimAM Attention Mechanism
3. Experiments and Results
3.1. Experimental Platform
3.2. Dataset Collection and Processing
3.3. Comparative Experiments
3.4. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Yao, Y.; Ma, L.; Wang, Y. Detection of a casting defect tracked by deep convolution neural network. Int. J. Adv. Manuf. Technol. 2018, 97, 573–581. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Huo, B.; Li, F.; Liu, Y. An automatic welding defect location algorithm based on deep learning. NDT E Int. 2021, 120, 102435. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE T Pattern Anal. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Li, Y.D.; Han, D.; Li, H.G.; Zhang, X.; Zhang, B.; Xiao, Z.F. Multi-block SSD based on small object detection for UAV railway scene surveillance. Chin. J Aeronaut. 2020, 33, 1747–1755. [Google Scholar] [CrossRef]
- Prabhu, B.B.; Lakshmi, R.; Ankitha, R.; Prateeksha, M.S.; Priya, N.C. RescueNet: YOLO-based object detection model for detection and counting of flood survivors. Model. Earth Syst. Environ. 2022, 8, 4509–4516. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, L.; Qi, F.; Chen, H. An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves. J. Real-Time Image Process. 2023, 20, 14. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, K.I. YOLO with adaptive frame control for real-time object detection applications. Multimed. Tools Appl. 2022, 81, 36375–36396. [Google Scholar] [CrossRef]
- Xu, L.; Dong, S.; Wei, H.; Ren, Q.; Huang, J.; Liu, J. Defect signal intelligent recognition of weld radiographs based on YOLO V5-IMPROVEMENT. J. Manuf. Process. 2023, 99, 373–381. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Cao, Z.; Wang, Y.; Tao, L.; Yang, J.; Zhang, K. PRC-Light YOLO: An efficient lightweight model for fabric defect detection. Appl. Sci. 2024, 14, 938. [Google Scholar] [CrossRef]
- Qi, J.; Liu, X.; Liu, K.; Xu, F.; Guo, H.; Tian, X.; Li, M.; Bao, Z.; Li, Y. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput. Electron. Agric. 2022, 194, 106780. [Google Scholar] [CrossRef]
- Li, X.; Te, R.; Yi, F.; Xu, G. TCS-YOLO model for global oil storage tank inspection. Opt. Precis. Eng. 2023, 31, 246–262. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, S.; Zhang, Y.; Xue, F.; Shen, F.; Guo, J. A stable diffusion enhanced YOLOV5 model for metal stamped part defect detection based on improved network structure. J. Manuf. Process. 2024, 111, 21–31. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Chen, Y.; Zhang, C.; Chen, B.; Huang, Y.; Sun, Y.; Wang, C.; Fu, X.; Dai, Y.; Qin, F.; Peng, Y.; et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 2024, 170, 107917. [Google Scholar] [CrossRef]
- Dai, X.; Chen, Y.; Yang, J.; Zhang, P.; Yuan, L.; Zhang, L. Dynamic detr: End-to-end object detection with dynamic attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2988–2997. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Liu, J.; Zhu, X.; Zhou, X.; Qian, S.; Yu, J. Defect detection for metal base of TO-Can packaged laser diode based on improved YOLO algorithm. Electronics 2022, 11, 1561. [Google Scholar] [CrossRef]
- Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble, France, 19–23 September 2022; pp. 443–459. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13713–13722. [Google Scholar]
- Xu, W.; Wan, Y. ELA: Efficient local attention for deep convolutional neural networks. arXiv 2024, arXiv:2403.01123. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13029–13038. [Google Scholar]
- Madhvacharyula, A.S.; Pavan, A.V.S.; Gorthi, S.; Chitral, S.; Venkaiah, N.; Kiran, D.V. In situ detection of welding defects: A review. Weld. World 2022, 66, 611–628. [Google Scholar] [CrossRef]
- Xu, H.; Yan, Z.H.; Ji, B.W.; Huang, P.F.; Cheng, J.P.; Wu, X.D. Defect detection in welding radiographic images based on semantic segmentation methods. Meaurement 2022, 188, 110569. [Google Scholar] [CrossRef]
- Sazonova, S.A.; Nikolenko, S.D.; Osipov, A.A.; Zyazina, T.V.; Venevitin, A.A. Weld defects and automation of methods for their detection. J. Phys. Conf. Ser. 2021, 1889, 022078. [Google Scholar] [CrossRef]
- Leo, M.; Del Coco, M.; Carcagnì, P.; Spagnolo, P.; Mazzeo, P.L.; Distante, C.; Zecca, R. Automatic visual monitoring of welding procedure in stainless steel kegs. Opt. Lasers Eng. 2018, 104, 220–231. [Google Scholar] [CrossRef]
Defect Type | Imagefeature | Characteristics | Cause |
---|---|---|---|
Pores | Dark spots | Smooth (single)/ Complex (clustered) | Low X-ray attenuation in voids |
Slag inclusions | Bright regions | Sharp and well-defined | High attenuation from tungsten reduces transmitted X-rays |
Incomplete penetrations | Black lines | Linear and distinct | Unpenetrated regions allow unimpeded X-ray transmission |
Model | Pore | Slaginclusion | Incomplete Penetration | mAP@0.5 | FPS | TPI(ms) | #Params | FLOPS |
---|---|---|---|---|---|---|---|---|
Ours | 93.3% | 96.4% | 96.5% | 95.4% | 93.5 | 10.7 | 2,180,582 | 4.6 |
YOLOv8 | 91.9% | 94.1% | 96.4% | 94.1% | 87.7 | 11.4 | 3,011,417 | 6.3 |
RT-DETR | 87.4% | 95.5% | 85.9% | 89.6% | 92.59 | 10.8 | 15,535,296 | 6.4 |
YOLOv7 | 81.7% | 90.5% | 94.1% | 88.7% | 77.51 | 12.9 | 6,218,596 | 8.2 |
YOLOv6 | 87.5% | 95.0% | 95.5% | 92.7% | 90.9 | 11 | 4,238,425 | 16.6 |
YOLOv5s | 90.1% | 93.7% | 96.2% | 93% | 86.20 | 11.6 | 2,503,529 | 5.1 |
YOLOv3 | 63.9% | 77.6% | 45.6% | 62.3% | 102.04 | 9.8 | 103,666,553 | 198.1 |
SSD | 83% | 91% | 49% | 74.11% | 78.12 | 12.8 | 8,447,859 | 67.4 |
Model | Precision | Recall | ||||
---|---|---|---|---|---|---|
Pore | Slag Inclusion | Incomplete Penetration | Pore | Slag Inclusion | Incomplete Penetration | |
Ours | 90.3 | 91.9 | 95.5 | 85.7 | 94.3 | 93.8 |
YOLOv8 | 93.1 | 91.5 | 95.8 | 80.1 | 92.3 | 93.3 |
RT-DETR | 87.4 | 90.5 | 93.9 | 79.6 | 85.4 | 75.5 |
YOLOv7 | 65.9 | 66.9 | 73.6 | 72.8 | 65.9 | 56.9 |
YOLOv6 | 86.5 | 73.6 | 93.4 | 77.1 | 88.2 | 73.8 |
YOLOv5s | 87.8 | 86.6 | 95.0 | 79.2 | 93.7 | 91.2 |
YOLOv3 | 86.8 | 72.2 | 95.4 | 67.4 | 82.4 | 66.6 |
SSD | 86.5 | 73.6 | 93.4 | 67.1 | 88.2 | 73.8 |
Model | F1 | ||
---|---|---|---|
Pore | Slag Inclusion | Incomplete Penetration | |
Ours | 87.9 | 93.1 | 94.9 |
YOLOv8 | 86.2 | 91.9 | 94.5 |
RT-DETR | 83.3 | 87.8 | 83.7 |
YOLOv7 | 69.3 | 66.5 | 64.3 |
YOLOv6 | 81.5 | 80.3 | 82.4 |
YOLOv5s | 83.2 | 90.1 | 93.1 |
YOLOv3 | 75.9 | 76.9 | 78.5 |
SSD | 75.6 | 80.3 | 82.4 |
Group | HS-FPN | ELA | SIMAM | mAP@0.5 | #Params | FLOPs |
---|---|---|---|---|---|---|
0 | 94.1% | 3,011,417 | 8.1 G | |||
1 | √ | 94.7%(↑0.6%) | 1,933,913 | 6.8 G | ||
2 | √ | √ | 95.1%(↑1.0%) | 1,982,745 | 6.9 G | |
3 | √ | √ | √ | 95.4%(↑1.3%) | 1,982,745 | 8.1 G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; He, Y.; Wu, L. Detection of Welding Defects Using the YOLOv8-ELA Algorithm. Appl. Sci. 2025, 15, 5204. https://doi.org/10.3390/app15095204
Chen Y, He Y, Wu L. Detection of Welding Defects Using the YOLOv8-ELA Algorithm. Applied Sciences. 2025; 15(9):5204. https://doi.org/10.3390/app15095204
Chicago/Turabian StyleChen, Yunxia, Yangkai He, and Lei Wu. 2025. "Detection of Welding Defects Using the YOLOv8-ELA Algorithm" Applied Sciences 15, no. 9: 5204. https://doi.org/10.3390/app15095204
APA StyleChen, Y., He, Y., & Wu, L. (2025). Detection of Welding Defects Using the YOLOv8-ELA Algorithm. Applied Sciences, 15(9), 5204. https://doi.org/10.3390/app15095204