Biochar’s Adsorption of Escherichia coli and Probiotics Lactiplantibacillus plantarum and Limosilactobacillus reuteri and Its Impact on Bacterial Growth Post In Vitro Digestion
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Bacteria
2.2. Scanning Electron Microscopy (SEM)
2.3. Adsorption Test for E. coli
2.4. Adsorption Test for L. plantarum and L. reuteri
2.5. In Vitro Simulated Digestion
2.6. E. coli Inhibitory Activity of the Biochar Digesta
2.7. Growth Effects of Biochar Digesta on L. plantarum and L. reuteri
2.8. Statistical Analysis
3. Results
3.1. Morphological Analysis
3.2. E. coli Adsorption by Biochar
3.3. L. plantarum and L. reuteri Adsorption by Biochar
3.4. Growth Inhibitory Activity Against E. coli
3.5. Probiotic Activity on L. plantarum and L. reuteri
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, H.-P.; Hagemann, N.; Draper, K.; Kammann, C. The Use of Biochar in Animal Feeding. PeerJ 2019, 7, e7373. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and Beneficial Impact of Biochar for Environmental Application: A Comprehensive Review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef] [PubMed]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass towards Optimum Biochar Yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Safarian, S. Performance Analysis of Sustainable Technologies for Biochar Production: A Comprehensive Review. Energy Rep. 2023, 9, 4574–4593. [Google Scholar] [CrossRef]
- Le Brun, A.P.; Clifton, L.A.; Halbert, C.E.; Lin, B.; Meron, M.; Holden, P.J.; Lakey, J.H.; Holt, S.A. Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli. Biomacromolecules 2013, 14, 2014–2022. [Google Scholar] [CrossRef]
- Deng, J.; Xiong, T.; Wang, H.; Zheng, A.; Wang, Y. Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. ACS Sustain. Chem. Eng. 2016, 4, 3750–3756. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Akpasi, S.; Anekwe, I.; Adedeji, J.; Kiambi, S. Biochar Development as a Catalyst and Its Application; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.A.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 10677. [Google Scholar] [CrossRef]
- Yang, Y.; Piao, Y.; Wang, R.; Su, Y.; Liu, N.; Lei, Y. Nonmetal Function Groups of Biochar for Pollutants Removal: A Review. J. Hazard. Mater. Adv. 2022, 8, 100171. [Google Scholar] [CrossRef]
- Schnee, L.S.; Knauth, S.; Hapca, S.; Otten, W.; Eickhorst, T. Analysis of Physical Pore Space Characteristics of Two Pyrolytic Biochars and Potential as Microhabitat. Plant Soil 2016, 408, 357–368. [Google Scholar] [CrossRef]
- Tan, S.; Narayanan, M.; Thu Huong, D.T.; Ito, N.; Unpaprom, Y.; Pugazhendhi, A.; Lan Chi, N.T.; Liu, J. A Perspective on the Interaction between Biochar and Soil Microbes: A Way to Regain Soil Eminence. Environ. Res. 2022, 214, 113832. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, I.N.; Nwajiuba, C.U.; Chamba, E.B.; Omoni, V.; Semple, K.T. Biochar Behaviour and the Influence of Soil Microbial Community. In Plant Growth and Stress Physiology; Springer: Cham, Switzerland, 2021; pp. 181–213. [Google Scholar]
- Saleem, I.; Riaz, M.; Mahmood, R.; Rasul, F.; Arif, M.; Batool, A.; Akmal, M.H.; Azeem, F.; Sajjad, S. Biochar and Microbes for Sustainable Soil Quality Management. In Microbiome Under Changing Climate; Elsevier: Amsterdam, The Netherlands, 2022; pp. 289–311. [Google Scholar]
- Han, J.; Meng, J.; Chen, S.; Li, C.; Wang, S. Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. Sci. Rep. 2018, 8, 16426. [Google Scholar] [CrossRef]
- Dotti, A.; Guagliano, M.; Ferretti, F.; Scotti, R.; Pedrazzi, S.; Puglia, N.; Orrù, R.V.A.; Cristiani, C.; Finocchio, E.; Basso Peressut, A.; et al. Self-standing adsorbent composites of waste-derived biochar and reduced graphene oxide for water decontamination. Molecules 2025, 30, 1997. [Google Scholar] [CrossRef]
- Naka, K.; Whatari, S.; Inoue, T.K.; Kodama, Y.; Oguma, K. Adsorption Effect of Activated Charcoal on Enterohemorrhagic Escherichia coli. J. Vet. Med. Sci. 2001, 63, 281–285. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Reggi, S.; Frazzini, S.; Pedrazzi, S.; Ghidoli, M.; Torresani, M.C.; Puglia, M.; Morselli, N.; Guagliano, M.; Cristiani, C.; Pilu, S.R.; et al. Metabolomic Insights into the Potential of Chestnut Biochar as a Functional Feed Ingredient. Appl. Sci. 2025, 15, 1084. [Google Scholar] [CrossRef]
- Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P. Methodology and Application of Escherichia coli F4 and F18 Encoding Infection Models in Post-Weaning Pigs. J. Anim. Sci. Biotechnol. 2019, 10, 53. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Giromini, C.; Reggi, S.; Cavalleri, M.; Moscatelli, A.; Onelli, E.; Rebucci, R.; Sundaram, T.S.; Coranelli, S.; Spalletta, A.; et al. Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 2021, 9, 1587. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; ISBN 9781138797099. [Google Scholar]
- Rajab, S.; Tabandeh, F.; Shahraky, M.K.; Alahyaribeik, S. The Effect of Lactobacillus Cell Size on Its Probiotic Characteristics. Anaerobe 2020, 62, 102103. [Google Scholar] [CrossRef] [PubMed]
- Schär-Zammaretti, P.; Ubbink, J. The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 2003, 85, 4076–4092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marzbali, M.H.; Hakeem, I.G.; Ngo, T.; Balu, R.; Jena, M.K.; Vuppaladadiyam, A.; Sharma, A.; Choudhury, N.R.; Batstone, D.J.; Shah, K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. J. Environ. Manag. 2024, 369, 122341. [Google Scholar] [CrossRef]
- Foppen, J.W.; Lutterodt, G.; Röling, W.F.M.; Uhlenbrook, S. Towards Understanding Inter-Strain Attachment Variations of Escherichia coli during Transport in Saturated Quartz Sand. Water Res. 2010, 44, 1202–1212. [Google Scholar] [CrossRef]
- Rocchetti, M.T.; Russo, P.; Capozzi, V.; Drider, D.; Spano, G.; Fiocco, D. Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying Its Probiotic Action. Int. J. Mol. Sci. 2021, 22, 12076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darmastuti, A.; Hasan, P.N.; Wikandari, R.; Utami, T.; Rahayu, E.S.; Suroto, D.A. Adhesion Properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine. Microorganisms 2021, 9, 2336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, J.; Wang, W.; Wu, Z.; Pan, D.; Guo, Y.; Cai, Z.; Liwei Lian, L. Effect of Lactobacillus reuteri on intestinal microbiota and immune parameters: Involvement of sex differences. J. Funct. Foods 2019, 53, 36–43. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, J.; Tang, G.; Bao, D.; Wang, T.; Kong, D. Impacts and Mechanisms of Biochar on Soil Microorganisms. Plant Soil Environ. 2023, 69, 45–54. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Z.; Allinson, G.; Li, X.; Jia, C. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. Chemosphere 2022, 299, 134333. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef]
- Saeed, M.; Ilyas, P.; Bibi, B.; Shabir, S.; Jayachandran, K.; Sayyed, R.Z.; Shati Ali, A.; Alfaifi, M.Y.; Show, P.L.; Rizvi, Z.F. Development of novel kinetic model based on microbiome and biochar for in-situ remediation of total petroleum hydrocarbons (TPHs) contaminated soil. Chemosphere 2023, 324, 138311. [Google Scholar] [CrossRef] [PubMed]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef] [PubMed]
- Kamyab, H.; Chelliapan, S.; Khalili, E.; Rezania, S.; Balasubramanian, B.; Taheri, M.M.; Simancas-Racines, D.; Rajendran, S.; Yusuf, M. Biochar as a carrier for plant growth-promoting bacteria in phytoremediation of pesticides. J. Hazard. Mater. Adv. 2025, 18, 100673. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Abdullah, R.; Ling, T.C. Biochar-Bacillus consortium for a sustainable agriculture: Physicochemical and soil stability analyses. Biochar 2023, 5, 17. [Google Scholar] [CrossRef]
- Lesmes, U. In Vitro Digestion Models for the Design of Safe and Nutritious Foods. Adv. Food Nutr. Res. 2023, 104, 179–203. [Google Scholar] [CrossRef]
- Chu, G.M.; Kim, J.H.; Kim, H.Y.; Ha, J.H.; Jung, M.S.; Song, Y.; Cho, J.H.; Lee, S.J.; Ibrahim, R.I.H.; Lee, S.S.; et al. Effects of Bamboo Charcoal on the Growth Performance, Blood Characteristics and Noxious Gas Emission in Fattening Pigs. J. Appl. Anim. Res. 2013, 41, 48–55. [Google Scholar] [CrossRef]
- Campana, R.; van Hemert, S.; Baffone, W. Strain-Specific Probiotic Properties of Lactic Acid Bacteria and Their Interference with Human Intestinal Pathogens Invasion. Gut Pathog. 2017, 9, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reggi, S.; Frazzini, S.; Fusi, E.; Guagliano, M.; Cristiani, C.; Onelli, E.; Moscatelli, A.; Rossi, L. Biochar’s Adsorption of Escherichia coli and Probiotics Lactiplantibacillus plantarum and Limosilactobacillus reuteri and Its Impact on Bacterial Growth Post In Vitro Digestion. Appl. Sci. 2025, 15, 5090. https://doi.org/10.3390/app15095090
Reggi S, Frazzini S, Fusi E, Guagliano M, Cristiani C, Onelli E, Moscatelli A, Rossi L. Biochar’s Adsorption of Escherichia coli and Probiotics Lactiplantibacillus plantarum and Limosilactobacillus reuteri and Its Impact on Bacterial Growth Post In Vitro Digestion. Applied Sciences. 2025; 15(9):5090. https://doi.org/10.3390/app15095090
Chicago/Turabian StyleReggi, Serena, Sara Frazzini, Eleonora Fusi, Marianna Guagliano, Cinzia Cristiani, Elisabetta Onelli, Alessandra Moscatelli, and Luciana Rossi. 2025. "Biochar’s Adsorption of Escherichia coli and Probiotics Lactiplantibacillus plantarum and Limosilactobacillus reuteri and Its Impact on Bacterial Growth Post In Vitro Digestion" Applied Sciences 15, no. 9: 5090. https://doi.org/10.3390/app15095090
APA StyleReggi, S., Frazzini, S., Fusi, E., Guagliano, M., Cristiani, C., Onelli, E., Moscatelli, A., & Rossi, L. (2025). Biochar’s Adsorption of Escherichia coli and Probiotics Lactiplantibacillus plantarum and Limosilactobacillus reuteri and Its Impact on Bacterial Growth Post In Vitro Digestion. Applied Sciences, 15(9), 5090. https://doi.org/10.3390/app15095090