Rheological and Morphological Properties of Blood vs. Vibration Exercises (Smovey®)—A Preliminary Study on Elderly Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Group Characteristics
2.2. Intervention
2.3. Study Methods of Morphological and Rheological Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Smovey® training caused changes in the morphological properties of blood, leading to increases in the RBC, HGB, PLT, and MCHC indices, and decreased the MCV index in the group of elderly women.
- Smovey® training affects the rheological parameters of the blood of elderly women, improving the deformability of erythrocytes at the lowest shear stress values and shortening the half-life of complete aggregation.
- Smovey® training is a simple, cheap, and accessible tool that can be used regularly to improve the rheological parameters of the blood of older women.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | aggregation index; |
AMP | amplitude and total extent of aggregation; |
EI | elongation index; |
HCT | hematocrit; |
HGB | hemoglobin; |
LORCA | Laser-Optical Rotational Cell Analyzer |
MCH | mean corpuscular hemoglobin; |
MCHC | mean corpuscular hemoglobin concentration; |
MCV | mean corpuscular volume; |
MPV | mean platelet volume; |
PDW | platelet distribution width; |
PLT | platelet count; |
RBC | red blood cell count; |
RDW | red blood cell distribution width; |
T1/2 | aggregation half-time; |
WBC | white blood cell count. |
References
- Uram, E.; Osuch, M.; Bogacz, R.; Gaik, M.; Magda, I.; Gazda, D. Decelerating Aging Process with Physical Activity—A Review. J. Educ. Health Sport 2023, 19, 189–201. [Google Scholar] [CrossRef]
- O’Halloran, P.; Liamputtong, P. Why Older People Engage in Physical Activity: An Exploratory Study of Participants in a Community-Based Walking Program. Aust. J. Prim. Health 2012, 20, 74–78. [Google Scholar] [CrossRef]
- Gradek, J.; Szymczyk, M.; Janicka, L. A New Idea for Physical Activity Based on Vibrations. Health Promot. Ecol. 2017, 1, 23–29. [Google Scholar]
- Crevenna, R.; Cenik, F.; Galle, A.; Komanadj, T.S.; Keilani, M. Feasibility, Acceptance and Long-Term Exercise Behaviour in Cancer Patients: An Exercise Intervention by Using a Swinging-Ring System. Wien. Klin. Wochenschr. 2015, 127, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Maloney-Hinds, C.; Petrofsky, J.; Zimmerman, G. The Effect of 30 Hz vs. 50 Hz Passive Vibration and Duration of Vibration on Skin Blood Flow in the Arm. Med. Sci. Monit. 2008, 14, CR112–CR116. [Google Scholar]
- Lohman, E.; Petrofsky, J.; Maloney-Hinds, C.; Betts-Schwab, H.; Thorpe, D. The Effect of Whole Body Vibration on Lower Extremity Skin Blood Flow in Normal Subjects. Med. Sci. Monit. 2007, 13, CR71–CR76. [Google Scholar] [PubMed]
- Park, S.-Y.; Son, W.-M.; Kwon, O.S. Effects of Whole Body Vibration Training on Body Composition, Skeletal Muscle Strength, and Cardiovascular Health. J. Exerc. Rehabil. 2016, 11, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M. Acute Exercise with Whole-Body Vibration Decreases Wave Reflection and Leg Arterial Stiffness. Am. J. Cardiovasc. Dis. 2011, 1, 60–67. [Google Scholar]
- Figueroa, A.; Gil, R.; Wong, A.; Hooshmand, S.; Park, S.; Vicil, F.; Sanchez-Gonzalez, M. Whole-Body Vibration Training Reduces Arterial Stiffness, Blood Pressure and Sympathovagal Balance in Young Overweight/Obese Women. Hypertens. Res. 2012, 35, 667–672. [Google Scholar] [CrossRef]
- Cochrane, D. Good Vibrations?—The Use of Vibration Therapy for Exercise Recovery, Injury Prevention and Rehabilitation. Phys. Ther. Rev. 2011, 16, 438–454. [Google Scholar] [CrossRef]
- Crevenna, R.; Cenik, F.; Galle, A.; Komanadj, T.S.; Keilani, M. Możliwość Realizacji, Akceptacja i Długotrwałość Programu Ruchowego Dla Pacjentów Onkologicznych Przy Zastosowaniu Przyrządów Smoveys. Phys. Rehab. Kur. Med. 2014, 24–28. [Google Scholar]
- Siems, W.; Sommerburg, O.; Grune, T. Erythrocyte Free Radical and Energy Metabolism. Clin. Nephrol. 2000, 53, S9–S17. [Google Scholar] [PubMed]
- Kępińska, M.; Szyguła, Z.; Dąbrowski, Z.; Szarek, M. Factors Affecting Changes in Rheological Properties of Blood—Literature Review. J. Lab. Diagn. 2017, 53, 247–250. [Google Scholar] [CrossRef]
- Biesiada, G.; Krzemień, J.; Czepiel, J.; Teległów, A.; Dabrowski, Z.; Spodaryk, K.; Mach, T. Rheological Properties of Erythrocytes in Patients Suffering from Erysipelas. Examination with LORCA Device. Clin. Hemorheol. Microcirc. 2006, 34, 383–390. [Google Scholar]
- Chwała, M.; Spannbauer, A.; Teległów, A.; Cencora, A.; Marchewka, A.; Hardeman, M.R.; Dabrowski, Z. Red Blood Cell Rheology in Patients with Chronic Venous Disease (CVD). Clin. Hemorheol. Microcirc. 2009, 41, 189–195. [Google Scholar] [CrossRef]
- Czerwiński, F.; Kapczyńska, D.L.; Musiał, A.A.; Słowińska, A.M.; Włodarczyk, P.M.; Wysocka, E.; Marcinkowska-Gapińska, A. Blood Viscosity as a Rheological Factor in the Pathogenesis of Vascular Diseases. In Biophysics and Medicine; Kubisz, L., Ed.; Scientific Publishing House of the Karol Marcinkowski Medical University: Poznań, Poland, 2019; pp. 32–58. [Google Scholar]
- Marcinkowska-Gapińska, A. Statistical Analysis of the Distribution of Blood Rheological Coefficients in the Group of Qualified Blood Donors; Scientific Publishing House of the Karol Marcinkowski Medical Universityo: Poznań, Poland, 2018. [Google Scholar]
- Shiga, T.; Maeda, N.; Kon, K. Erythrocyte Rheology. Crit. Rev. Oncol. Hematol. 1990, 10, 9–48. [Google Scholar] [CrossRef]
- Turczyński, B.; Michalska-Małecka, K.; Słowińska, L.; Szczesny, S.; Romaniuk, W. Nonproliferative Diabetic Retinopathy and Red Blood Cell Aggregation. Wiad. Lek. 2004, 57, 634–640. [Google Scholar]
- Telen, M. Red Blood Cell Surface Adhesion Molecules: Their Possible Roles in Normal Human Physiology and Disease. Semin. Hematol. 2000, 37, 130–142. [Google Scholar] [CrossRef]
- Nemkov, T.; Skinner, S.C.; Nader, E.; Stefanoni, D.; Robert, M.; Cendali, F.; Stauffer, E.; Cibiel, A.; Boisson, C.; Connes, P.; et al. Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int. J. Mol. Sci. 2021, 22, 896. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Cardiorespiratory Responses to Acute Exercises. In Physiology of Sport and Exercise; Human Kinetics Inc.: Champaign, IL, USA, 2022; pp. 214–238. ISBN 9781718201736. [Google Scholar]
- Kilic-Toprak, E.; Unver, F.; Kilic-Erkek, O.; Korkmaz, H.; Ozdemir, Y.; Oymak, B.; Oskay, A.; Bor-Kucukatay, M. Increased Erythrocyte Aggregation Following an Acute Bout of Eccentric Isokinetic Exercise Does Not Exceed Two Days. Biorheology 2018, 55, 15–24. [Google Scholar] [CrossRef]
- Marchewka, A.; Filar-Mierzwa, K.; Teległów, A. Rheological Blood Properties versus Physical Exertion in the Process of Ageing. Med. Rehabil. 2009, 13, 19–22. [Google Scholar]
- Hu, M.; Lin, W. Effects of Exercise Training on Red Blood Cell Production: Implications for Anemia. Acta Haematol. 2012, 127, 156–164. [Google Scholar] [CrossRef]
- Baskurt, O.K. (Ed.) Mechanisms of Blood Rheology Alterations. In Handbook of Hemorheology and Hemodynamics; IOS Press: Amsterdam, The Netherlands, 2007; pp. 170–190. [Google Scholar]
- Toth, K.; Kesmarky, G.; Alexy, T. Clinical Significance of Hemorheological Alterations. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 392–433. [Google Scholar]
- Carter, C.; McGee, D.; Reed, D.; Yano, K.; Stemmermann, G. Hematocrit and the Risk of Coronary Heart Disease: The Honolulu Heart Program. Am. Heart J. 1983, 105, 674–679. [Google Scholar] [CrossRef]
- Kannel, W.B.; D’Agostino, R.B.; Belanger, A.J. Fibrinogen, Cigarette Smoking, and Risk of Cardiovascular Disease: Insights from the Framingham Study. Am. Heart J. 1987, 113, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Telgłów, A.; Pokorski, J.; Nitecki, J.; Pokorska, J.; Nitecka, E.; Marchewka, A.; Dabrowski, Z.; Marchewka, J. Effects of a Meal on the Hemorheologic Responses to Exercise in Young Males. BioMed Res. Int. 2014, 2014, 862968. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, A.; Filar-Mierzwa, K.; Dąbrowski, Z.; Teległó, A. Effects of Rhythmic Exercise Performed to Music on the Rheological Properties of Blood in Women over 60 Years of Age. Clin. Hemorheol. Microcirc. 2015, 60, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Filar-Mierzwa, K.; Marchewka, A.; Dabrowski, Z.; Bac, A.; Marchewka, J. Effects of Dance Movement Therapy on the Rheological Properties of Blood in Elderly Women. Clin. Hemorheol. Microcirc. 2019, 72, 211–219. [Google Scholar] [CrossRef]
- Awad, K.M.; Osman, A.A.; Bashir, A.A.; Mohamed, A.H.; Abeadalla, A.A.; Ali, I.A.; Taha, E.H.; Musa, O.A.A. Relationship between Obesity, Physical Activity, Sleeping Hours and Red Blood Cell Parameters in Adult Sudanese Population: Effect of Exercise and Sleep Hours on RBC Parameters. Ann. Med. Physiol. 2019, 3, 21–26. [Google Scholar] [CrossRef]
- Bobeuf, F.; Labonté, M.; Khalil, A.; Dionne, I.J. Effect of Resistance Training on Hematological Blood Markers in Older Men and Women: A Pilot Study. Curr. Gerontol. Geriatr. Res. 2009, 2009, 156820. [Google Scholar] [CrossRef]
- Strzelczyk, M.; Teległów, A.; Marchewka, J.; Ptaszek, B.; Marchewka, A. The Impact of Moderate Physical Exercise on the Rheological and Biochemical Properties of Blood in Osteoarthritis Patients Who Are Regular Winter Swimmers. Folia Biol. 2021, 69, 31–37. [Google Scholar] [CrossRef]
- Kabata-Piżuch, A.; Suder, A.; Handzlik-Waszkiewicz, P.; Teległów, A.; Marchewka, A. Alterations of Body Composition, Blood Morphology and Fibrinogen Concentration after Vibration Therapy in Older Adult Women: A Randomized Controlled Trial. J. Clin. Med. 2023, 12, 6620. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Jung, W.-S.; Park, W.; Park, H.-Y. Twelve Weeks of Combined Resistance and Aerobic Exercise Improves Cardiometabolic Biomarkers and Enhances Red Blood Cell Hemorheological Function in Obese Older Men: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 5020. [Google Scholar] [CrossRef] [PubMed]
- Sandor, B.; Nagy, A.; Toth, A.; Rabai, M.; Mezey, B.; Csatho, A.; Czuriga, I.; Toth, K.; Szabados, E. Effects of Moderate Aerobic Exercise Training on Hemorheological and Laboratory Parameters in Ischemic Heart Disease Patients. PLoS ONE 2014, 9, e110751. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Group Before Smovey® Activity; n = 15 | Group after Smovey® Activity; n = 15 | Control Group; n = 15 |
---|---|---|---|
Age [years] | 71.08 ± 6.41 | - | 69.78 ± 6.24 |
Body height [cm] | 159.62 ± 5.89 | 159.62 ± 5.89 | 158.93 ± 5.09 |
Body mass [kg] | 73.85 ± 13.62 | 73 ± 12.76 | 71.07 ± 11.51 |
Body mass index [kg/m2] | 28.98 ± 5.25 | 28.66 ± 4.94 | 28.17 ± 4.55 |
Parameters | Group Before Smovey® Activity | Group After Smovey® Activity | p Value. | Control Group | p Value. (After Smovey® Activity vs. the Control Group) |
---|---|---|---|---|---|
WBC [109/L] | 5.22 ± 1.21 | 5.41 ± 1.20 | 0.419 | 5.76 ± 1.87 | 0.564 |
RBC [1012/L] | 4.17 ± 0.24 | 4.46 ± 0.39 | 0.010 * | 4.35 ± 0.21 | 0.385 |
HGB [g/dL] | 12.24 ± 0.72 | 13.32 ± 1.32 | 0.002 * | 13.47 ± 0.90 | 0.720 |
HCT [L/L] | 39.05 ± 2.27 | 40.52 ± 3.82 | 0.093 | 40.03 ± 1.88 | 0.670 |
PLT [109/L] | 228.38 ± 38.79 | 268.15 ± 54.26 | 0.000 * | 241.29 ± 48.91 | 0.188 |
MCV [fl] | 93.77 ± 4.36 | 90.85 ±2.91 | 0.000 * | 92.00 ± 3.37 | 0.418 |
MCH [pg] | 29.38 ± 1.60 | 29.71 ± 2.15 | 0.275 | 30.99 ± 2.03 | 0.124 |
MCHC [mmol/L] | 31.42 ± 0.52 | 32.82 ± 0.74 | 0.000 * | 33.68 ± 1.66 | 0.100 |
EI 0.30 [Pa] | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.014 * | 0.05 ± 0.01 | 0.364 |
EI 0.58 [Pa] | 0.10 ± 0.02 | 0.10 ± 0.01 | 0.894 | 0.10 ± 0.02 | 0.909 |
EI 1.13 [Pa] | 0.19 ± 0.02 | 0.18 ± 0.02 | 0.509 | 0.18 ± 0.02 | 0.816 |
EI 2.19 [Pa] | 0.29 ± 0.02 | 0.28 ± 0.02 | 0.432 | 0.28 ± 0.02 | 0.708 |
EI 4.24 [Pa] | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.880 | 0.37 ± 0.02 | 0.160 |
EI 8.23 [Pa] | 0.44 ± 0.02 | 0.45 ± 0.01 | 0.383 | 0.43 ± 0.02 | 0.012 * |
EI 15.96 [Pa] | 0.50 ± 0.02 | 0.50 ± 0.02 | 0.887 | 0.45 ± 0.12 | 0.149 |
EI 31.04 [Pa] | 0.55 ± 0.02 | 0.55 ± 0.03 | 0.860 | 0.53 ± 0.03 | 0.153 |
EI 59.97 [Pa] | 0.59 ± 0.02 | 0.56 ± 0.13 | 0.375 | 0.56 ± 0.04 | 0.955 |
AI [%] | 62.37 ± 4.67 | 64.65 ± 5.70 | 0.033 * | 62.99 ± 5.24 | 0.437 |
AMP [au] | 25.51 ± 2.43 | 21.11 ± 1.99 | 0.000 * | 24.22 ± 1.78 | 0.000 * |
T1/2 [s] | 2.27 ± 0.50 | 2.02 ± 0.61 | 0.034 * | 2.19 ± 0.56 | 0.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełtyka-Słowik, A.; Teległów, A.; Gradek, J. Rheological and Morphological Properties of Blood vs. Vibration Exercises (Smovey®)—A Preliminary Study on Elderly Women. Appl. Sci. 2025, 15, 5058. https://doi.org/10.3390/app15095058
Kiełtyka-Słowik A, Teległów A, Gradek J. Rheological and Morphological Properties of Blood vs. Vibration Exercises (Smovey®)—A Preliminary Study on Elderly Women. Applied Sciences. 2025; 15(9):5058. https://doi.org/10.3390/app15095058
Chicago/Turabian StyleKiełtyka-Słowik, Aleksandra, Aneta Teległów, and Joanna Gradek. 2025. "Rheological and Morphological Properties of Blood vs. Vibration Exercises (Smovey®)—A Preliminary Study on Elderly Women" Applied Sciences 15, no. 9: 5058. https://doi.org/10.3390/app15095058
APA StyleKiełtyka-Słowik, A., Teległów, A., & Gradek, J. (2025). Rheological and Morphological Properties of Blood vs. Vibration Exercises (Smovey®)—A Preliminary Study on Elderly Women. Applied Sciences, 15(9), 5058. https://doi.org/10.3390/app15095058