Assessment of Injury Risk in Professional Soccer Players: A Long-Term Study
Abstract
:1. Introduction
2. Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Running Demand Analysis
2.4. Statistical Analysis
3. Results
3.1. ACWR Four Weeks Prior to Injury
3.2. ACWR Three Weeks Prior to Injury
3.3. ACWR Two Weeks Prior to Injury
3.4. ACWR One Week Prior to Injury
4. Discussion
5. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Söderman, K.; Werner, S.; Pietilä, T.; Engström, B.; Alfredson, H. Balance board training: Prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg. Sports Traumatol. Arthrosc. 2000, 8, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, F.; Carling, C.; Reilly, T.; Vandewalle, H.; Church, J.; Rochcongar, P. Incidence of injuries in elite French youth soccer players: A 10-season study. Am. J. Sports Med. 2006, 34, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Gillquist, J. The avoidability of soccer injuries. Int. J. Sports Med. 1983, 4, 124–128. [Google Scholar] [CrossRef]
- Torreno, N.; Munguia-Izquierdo, D.; Coutts, A.; de Villarreal, E.S.; Asian-Clemente, J.; Suarez-Arrones, L. Relationship between external and internal loads of professional soccer players during full matches in official games using global positioning systems and heart-rate technology. Int. J. Sports Physiol. Perform 2016, 11, 940–946. [Google Scholar] [CrossRef]
- Inklaar, H. Soccer injuries: I: Incidence and severity. Sports Med. 1994, 18, 55–73. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Ekstrand, J. Previous injury as a risk factor for injury in elite football-a prospective study over two consecutive seasons. Br. J. Sports Med. 2006, 40, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.L.; Wong, D.P.; Weldon, A.; Koundourakis, N.E. Quantification, tapering and positional analysis of across 9-weekly microcycles in a professional Chinese super league soccer team. EC Orthop. 2020, 12, 39. [Google Scholar]
- Waldén, M.; Hägglund, M.; Ekstrand, J. UEFA Champions League study: A prospective study of injuries in professional football during the 2001–2002 season. Br. J. Sports Med. 2005, 39, 542–546. [Google Scholar] [CrossRef]
- Bangsbo, J. Energy demands in competitive soccer. J. Sports Sci. 1994, 12 (Suppl. S1), S5–S12. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Match running performance and fitness in youth soccer. Int. J. Sports Med. 2010, 31, 818–825. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Bakken, A.; Targett, S.; Bere, T.; Eirale, C.; Farooq, A.; Mosler, A.B.; Tol, J.L.; Whiteley, R.; Khan, K.M.; Bahr, R. Muscle strength is a poor screening test for predicting lower extremity injuries in professional male soccer players: A 2-year prospective cohort study. Am. J. Sports Med. 2018, 46, 1481–1491. [Google Scholar] [CrossRef]
- Lehance, C.; Binet, J.; Bury, T.; Croisier, J.L. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand. J. Med. Sci. Sports 2009, 19, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Calvert, T.W.; Banister, E.W.; Savage, M.V.; Bach, T. A systems model of the effects of training on physical performance. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 94–102. [Google Scholar] [CrossRef]
- Ekstrand, J.; Tropp, H. The incidence of ankle sprains in soccer. Foot Ankle 1990, 11, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.-X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: A comprehensive 3-year study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.V. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br. J. Sports Med. 2014, 48, 708–712. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef]
- Michailidis, Y. A Systematic Review on Utilizing the Acute to Chronic Workload Ratio for Injury Prevention among Professional Soccer Players. Appl. Sci. 2024, 14, 4449. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, A.; Fousekis, K.; Fousekis, G.; Vaitsis, N.; Terzidis, I.; Christoulas, K.; Michailidis, Y.; Mandroukas, A.; Metaxas, T. Two or four weeks acute: Chronic workload ratio is more useful to prevent injuries in soccer? Appl. Sci. 2022, 13, 495. [Google Scholar] [CrossRef]
- Modric, T.; Versic, S.; Sekulic, D.; Liposek, S. Analysis of the association between running performance and game performance indicators in professional soccer players. Int. J. Environ. Res. Public Health 2019, 16, 4032. [Google Scholar] [CrossRef] [PubMed]
- Thema, M.T.; Jacobs, S.; Berg, L.v.D.; Strauss, A.; Mahlangu, M.P. The role of playing position in soccer injury characteristics: Evidence from sub-elite athletes. Front. Sports Act. Living 2025, 7, 1542300. [Google Scholar] [CrossRef]
- Tiernan, C.; Comyns, T.; Lyons, M.; Nevill, A.M.; Warrington, G. The association between training load indices and injuries in elite soccer players. J. Strength Cond. Res. 2020, 36, 3143–3150. [Google Scholar] [CrossRef]
- Clavel, P.; Leduc, C.; Morin, J.-B.; Owen, C.; Samozino, P.; Peeters, A.; Buchheit, M.; Lacome, M. Concurrent validity and reliability of sprinting force–velocity profile assessed with GPS devices in elite athletes. Int. J. Sports Physiol. Perform. 2022, 17, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.J.; Duffield, R. Validity and reliability of GPS devices for measuring movement demands of team sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Al Haddad, H.; Méndez-Villanueva, A.; Torreño, N.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Variability of GPS-derived running performance during official matches in elite professional soccer players. J. Sports Med. Phys. Fit. 2018, 58, 1439–1445. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Torreño, N.; Requena, B.; De Villarreal, E.S.; Casamichana, D.; Barbero-Alvarez, J.C.; Munguía-Izquierdo, D. Match-play activity profile in professional soccer players during official games and the relationship between external and internal load. J. Sports Med. Phys. Fit. 2015, 55, 1417–1422. [Google Scholar]
- Buchheit, M. Applying the acute:chronic workload ratio in elite football: Worth the effort? Br. J. Sports Med. 2016, 51, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- White, R.C. The Acute: Chronic Workload Ratio and Injury Occurrence Among South African PSL Soccer Players. Doctoral Dissertation, Stellenbosch University, Stellenbosch, South Africa, July 2019. [Google Scholar]
- Modric, T.; Versic, S.; Sekulic, D. Playing position specifics of associations between running performance during the training and match in male soccer players. Acta Gymnica 2020, 50, 51–60. [Google Scholar] [CrossRef]
- Ehrmann, F.E.; Duncan, C.S.; Sindhusake, D.; Franzsen, W.N.; Greene, D.A. GPS and injury prevention in professional soccer. J. Strength Cond. Res. 2016, 30, 360–367. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; De Alba, B.; Röll, M.; Torreno, I.; Strütt, S.; Freyler, K.; Ritzmann, R. Player monitoring in professional soccer: Spikes in acute: Chronic workload are dissociated from injury occurrence. Front. Sports Act. Living 2020, 2, 75. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Wrigley, T.V.; Baker, R.; Pandy, M.G. Biomechanical response to hamstring muscle strain injury. Gait Posture 2009, 29, 332–338. [Google Scholar] [CrossRef]
- Fanchini, M.; Rampinini, E.; Riggio, M.; Coutts, A.J.; Pecci, C.; McCall, A. Despite association, the acute: Chronic work load ratio does not predict non-contact injury in elite footballers. Sci. Med. Footb. 2018, 2, 108–114. [Google Scholar] [CrossRef]
Mean | SD | N | N% | ||
---|---|---|---|---|---|
Age | 20.6 | 1.6 | |||
Position | Central defender | 2 | 10.0% | ||
Fullback | 5 | 25.0% | |||
Central midfielder | 6 | 30.0% | |||
Winger | 2 | 10.0% | |||
Forward | 5 | 25.0% |
Injury | p-Value | ||||||
---|---|---|---|---|---|---|---|
No | Yes | Total | |||||
Mean | SD | Mean | SD | Mean | SD | ||
ACWR—Total Distance (km) | 1.07 | 0.14 | 1.18 | 0.21 | 1.13 | 0.18 | 0.063 |
ACWR—Distance Speed Range (15–20 km/h) | 1.04 | 0.28 | 1.40 | 0.58 | 1.22 | 0.49 | 0.015 * |
ACWR—Distance Speed Range (20–25 km/h) | 1.05 | 0.26 | 1.25 | 0.36 | 1.15 | 0.33 | 0.045 * |
ACWR—Distance Speed Range (>25 km/h) | 1.03 | 0.32 | 1.49 | 0.65 | 1.26 | 0.56 | 0.008 * |
ACWR—# of Accelerations (>2.5 m/s2) | 1.07 | 0.20 | 1.30 | 0.31 | 1.19 | 0.28 | 0.010 * |
ACWR—# of Decelerations (>2.5 m/s2) | 1.09 | 0.21 | 1.29 | 0.33 | 1.19 | 0.29 | 0.025 |
Injury | p-Value | ||||||
---|---|---|---|---|---|---|---|
No | Yes | Total | |||||
Mean | SD | Mean | SD | Mean | SD | ||
ACWR—Total Distance (km) | 1.07 | 0.10 | 1.18 | 0.20 | 1.12 | 0.17 | 0.033 * |
ACWR—Distance Speed Range (15–20 km/h) | 1.02 | 0.16 | 1.32 | 0.45 | 1.17 | 0.36 | 0.007 * |
ACWR—Distance Speed Range (20–25 km/h) | 1.05 | 0.25 | 1.20 | 0.29 | 1.12 | 0.28 | 0.081 |
ACWR—Distance Speed Range (>25 km/h) | 1.04 | 0.32 | 1.46 | 0.53 | 1.25 | 0.48 | 0.004 * |
ACWR—# of Accelerations (>2.5 m/s2) | 1.07 | 0.17 | 1.26 | 0.25 | 1.16 | 0.23 | 0.009 * |
ACWR—# of Decelerations (>2.5 m/s2) | 1.08 | 0.16 | 1.26 | 0.25 | 1.17 | 0.23 | 0.013 * |
Injury | p-Value | ||||||
---|---|---|---|---|---|---|---|
No | Yes | Total | |||||
Mean | SD | Mean | SD | Mean | SD | ||
ACWR—Total Distance (km) | 1.08 | 0.15 | 1.14 | 0.14 | 1.11 | 0.15 | 0.208 |
ACWR—Distance Speed Range (15–20 km/h) | 1.04 | 0.17 | 1.25 | 0.30 | 1.14 | 0.26 | 0.008 * |
ACWR—Distance Speed Range (20–25 km/h) | 1.04 | 0.26 | 1.16 | 0.24 | 1.10 | 0.26 | 0.134 |
ACWR—Distance Speed Range (>25 km/h) | 1.08 | 0.34 | 1.40 | 0.44 | 1.24 | 0.42 | 0.012 * |
ACWR—# of Accelerations (>2.5 m/s2) | 1.08 | 0.20 | 1.19 | 0.15 | 1.13 | 0.18 | 0.065 |
ACWR—# of Decelerations (>2.5 m/s2) | 1.09 | 0.19 | 1.18 | 0.15 | 1.14 | 0.18 | 0.086 |
Injury | p-Value | ||||||
---|---|---|---|---|---|---|---|
No | Yes | Total | |||||
Mean | SD | Mean | SD | Mean | SD | ||
ACWR—Total Distance (km) | 1.04 | 0.11 | 1.08 | 0.12 | 1.06 | 0.11 | 0.214 |
ACWR—Distance Speed Range (15–20 km/h) | 1.04 | 0.28 | 1.40 | 0.58 | 1.22 | 0.49 | 0.015 * |
ACWR—Distance Speed Range (20–25 km/h) | 0.98 | 0.16 | 1.08 | 0.22 | 1.03 | 0.19 | 0.126 |
ACWR—Distance Speed Range (>25 km/h) | 1.06 | 0.27 | 1.30 | 0.33 | 1.18 | 0.32 | 0.016 * |
ACWR—# of Accelerations (>2.5 m/s2) | 1.02 | 0.14 | 1.11 | 0.13 | 1.07 | 0.14 | 0.049 * |
ACWR—# of Decelerations (>2.5 m/s2) | 1.03 | 0.13 | 1.10 | 0.12 | 1.06 | 0.13 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fousekis, A.; Fousekis, K.; Fousekis, G.; Gkrilias, P.; Michailidis, Y.; Mandroukas, A.; Metaxas, T. Assessment of Injury Risk in Professional Soccer Players: A Long-Term Study. Appl. Sci. 2025, 15, 5039. https://doi.org/10.3390/app15095039
Fousekis A, Fousekis K, Fousekis G, Gkrilias P, Michailidis Y, Mandroukas A, Metaxas T. Assessment of Injury Risk in Professional Soccer Players: A Long-Term Study. Applied Sciences. 2025; 15(9):5039. https://doi.org/10.3390/app15095039
Chicago/Turabian StyleFousekis, Andreas, Konstantinos Fousekis, Georgios Fousekis, Panagiotis Gkrilias, Yiannis Michailidis, Athanasios Mandroukas, and Thomas Metaxas. 2025. "Assessment of Injury Risk in Professional Soccer Players: A Long-Term Study" Applied Sciences 15, no. 9: 5039. https://doi.org/10.3390/app15095039
APA StyleFousekis, A., Fousekis, K., Fousekis, G., Gkrilias, P., Michailidis, Y., Mandroukas, A., & Metaxas, T. (2025). Assessment of Injury Risk in Professional Soccer Players: A Long-Term Study. Applied Sciences, 15(9), 5039. https://doi.org/10.3390/app15095039