Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review
Abstract
:1. Introduction
2. Background
2.1. AI and Digital Twins
2.2. Remote Sensing and Digital Twins
2.3. DT Architecture
2.3.1. Real-Time Monitoring
2.3.2. Collection and Integration of Data from Multiple Sources
2.3.3. Simulation and Modeling of Various Scenarios
3. Materials and Methods
3.1. Research Questions and Databases Searched
3.2. Eligibility Criteria
4. Results
4.1. DT Application in Agricultural Water Management
4.2. DT Typology
4.3. AI Integration
4.4. Maturity Level
4.5. Key Concept and Applications
4.5.1. Digital Twins in Irrigation
4.5.2. Digital Twins in Plant Water
4.5.3. Digital Twins in Vertical Farming
4.5.4. Digital Twins in Aquaponics
4.5.5. Digital Twins in Hydroponics
4.6. Limitation of Search
5. Discussion
5.1. Practical Impact of DTs on Water Management
5.2. Scalability
5.3. Practical Barriers
5.4. Economic Viability
6. Conclusions
Future Perspective
Funding
Conflicts of Interest
References
- Hemond, O.; Butsic, V.; Moanga, D.; Wartenberg, A.C. Farm consolidation and turnover dynamics linked to increased crop diversity and higher agricultural input use. Agric. Syst. 2023, 210, 103708. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, Y.; Zhao, Y.; Li, C.; Zhang, Y.; Fan, Y.; Yang, W.; Kang, M. Life cycle water and energy consumption and efficiency analysis of major crops in China. J. Clean. Prod. 2024, 467, 142899. [Google Scholar] [CrossRef]
- Water Scarcity, the Climat Crisis and Global Food Security: A Call for Collaborative Action 2023. 2023. Available online: https://www.un.org/en/un-chronicle/water-scarcity-climate-crisis-and-global-food-security-call-collaborative-action (accessed on 17 July 2024).
- Wang, J.; Xue, L.; Liu, H.; Cao, B.; Bai, Y.; Xiang, C.; Li, X. Patterns of salt transport and factors affecting typical shrub in desert-oases transition areas. Environ. Res. 2023, 236, 116804. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Effective Management of Water Resources Problems in Irrigated Agriculture Through Simulation Modeling. Water Resour. Manag. 2024, 38, 2869–2887. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Rahman, M.K.I.A.; Otuoze, A.O.; Onotu, P. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Anjum, M.N.; Cheema, M.J.M.; Hussain, F.; Wu, R.-S. Chapter 6—Precision irrigation: Challenges and opportunities. In Precis Agric; Zaman, Q., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 85–101. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, A.M.; Rodríguez-Gonzalez, C.A.; López, R.; Hernández-Torres, J.A.; Caparrós-Mancera, J.J. Water Microturbines for Sustainable Applications: Optimization Analysis and Experimental Validation. Water Resour. Manag. 2024, 38, 1011–1025. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Sheikh, M.; Iqra, F.; Ambreen, H.; Pravin, K.A.; Ikra, M.; Chung, Y.S. Integrating artificial intelligence and high-throughput phenotyping for crop improvement. J. Integr. Agric. 2024, 23, 1787–1802. [Google Scholar] [CrossRef]
- Pace, R.; Di Cola, V.S.; Monti, M.M.; Affinito, A.; Cuomo, S.; Loreto, F.; Ruocco, M. Artificial intelligence in soil microbiome analysis: A potential application in predicting and enhancing soil health—A review. Discov. Appl. Sci. 2025, 7, 85. [Google Scholar] [CrossRef]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
- Novielli, P.; Romano, D.; Pavan, S.; Losciale, P.; Stellacci, A.M.; Diacono, D.; Bellotti, R.; Tangaro, S. Explainable artificial intelligence for genotype-to-phenotype prediction in plant breeding: A case study with a dataset from an almond germplasm collection. Front. Plant Sci. 2024, 15, 1434229. [Google Scholar] [CrossRef]
- Novielli, P.; Magarelli, M.; Romano, D.; de Trizio, L.; Di Bitonto, P.; Monaco, A.; Amoroso, N.; Stellacci, A.M.; Zoani, C.; Bellotti, R.; et al. Climate Change and Soil Health: Explainable Artificial Intelligence Reveals Microbiome Response to Warming. Mach. Learn. Knowl. Extr. 2024, 6, 1564–1578. [Google Scholar] [CrossRef]
- Raouhi, E.M.; Zouizza, M.; Lachgar, M.; Zouani, Y.; Hrimech, H.; Kartit, A. AIDSII: An AI-based digital system for intelligent irrigation. Softw. Impacts 2023, 17, 100574. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A systematic review of iot solutions for smart farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- Wang, L. Digital Twins in Agriculture: A Review of Recent Progress and Open Issues. Electronics 2024, 13, 2209. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Peladarinos, N.; Piromalis, D.; Cheimaras, V.; Tserepas, E.; Munteanu, R.A.; Papageorgas, P. Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review. Sensors 2023, 23, 7128. [Google Scholar] [CrossRef]
- Pandey, D.K.; Mishra, R. Towards sustainable agriculture: Harnessing AI for global food security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Dawn, N.; Ghosh, S.; Saha, A.; Chatterjee, S.; Ghosh, T.; Guha, S.; Sarkar, S.; Mukherjee, P.; Sanyal, T. A Review on Digital Twins Technology: A New Frontier in Agriculture. Artif. Intell. Appl. 2023, 2, 250–262. [Google Scholar] [CrossRef]
- Escribà-Gelonch, M.; Liang, S.; van Schalkwyk, P.; Fisk, I.; Long, N.V.D.; Hessel, V. Digital Twins in Agriculture: Orchestration and Applications. J. Agric. Food Chem. 2024, 72, 10737–10752. [Google Scholar] [CrossRef] [PubMed]
- Purcell, W.; Neubauer, T.; Mallinger, K. Digital Twins in agriculture: Challenges and opportunities for environmental sustainability. Curr. Opin. Env. Sustain. 2023, 61, 101252. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Benos, L.; Kyriakarakos, G.; Pearson, S.; Sørensen, C.G.; Bochtis, D. Digital Twins in Agriculture and Forestry: A Review. Sensors 2024, 24, 3117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, Y.; Li, Y.; Li, Y.; Hong, S.; Li, Q.; Liu, X.; Lu, M.; Wang, X. Exploring the Integration of Digital Twin and Generative AI in Agriculture. In Proceedings of the 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2023; pp. 223–228. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hyg. Environ. Health Adv. 2024, 12, 100114. [Google Scholar] [CrossRef]
- Mana, A.A.; Allouhi, A.; Hamrani, A.; Rehman, S.; El Jamaoui, I.; Jayachandran, K. Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Riaz, K.; McAfee, M.; Gharbia, S.S. Management of Climate Resilience: Exploring the Potential of Digital Twin Technology, 3D City Modelling, and Early Warning Systems. Sensors 2023, 23, 2659. [Google Scholar] [CrossRef]
- Rajmis, S.; Karpinski, I.; Pohl, J.-P.; Herrmann, M.; Kehlenbeck, H. Economic potential of site-specific pesticide application scenarios with direct injection and automatic application assistant in northern Germany. Precis. Agric. 2022, 23, 2063–2088. [Google Scholar] [CrossRef]
- Singh, G.; Rajesh, R.; Daultani, Y.; Misra, S.C. Resilience and sustainability enhancements in food supply chains using Digital Twin technology: A grey causal modelling (GCM) approach. Comput. Ind. Eng. 2023, 179, 109172. [Google Scholar] [CrossRef]
- Yadav, M.; Vashisht, B.; Vullaganti, N.; Kumar, P.; Jalota, S.; Kumar, A.; Kaushik, P. UAV-enabled approaches for irrigation scheduling and water body characterization. Agric. Water Manag. 2024, 304, 109091. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Wang, L.; He, G. Remote Sensing Data Fusion With Generative Adversarial Networks: State-of-the-art methods and future research directions. IEEE Geosci. Remote Sens. Mag. 2022, 10, 295–328. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Tang, H.; Turowski, J.M.; Yan, Y.; Bazai, N.A.; Wei, R.; Li, L. A digital-twin platform for cryospheric disaster warning. Natl. Sci. Rev. 2024, 11, nwae300. [Google Scholar] [CrossRef] [PubMed]
- Brocca, L.; Barbetta, S.; Camici, S.; Ciabatta, L.; Dari, J.; Filippucci, P.; Massari, C.; Modanesi, S.; Tarpanelli, A.; Bonaccorsi, B.; et al. A Digital Twin of the terrestrial water cycle: A glimpse into the future through high-resolution Earth observations. Front. Sci. 2024, 1, 1190191. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, X.; Chen, C.; Chen, M.; Li, C.; Lu, K.; Lin, H.; Fang, C. Digital twin-based virtual modeling of the Poyang Lake wetland landscapes. Environ. Model. Softw. 2024, 181, 106168. [Google Scholar] [CrossRef]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. Available online: https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication (accessed on 18 July 2024).
- Stark, R.; Kind, S.; Neumeyer, S. Innovations in digital modelling for next generation manufacturing system design. CIRP Ann. Manuf. Technol. 2017, 66, 169–172. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 2018, 67, 169–172. [Google Scholar] [CrossRef]
- Ponomarev, K.; Kudryashov, N.; Popelnukha, N.; Potekhin, V. Main principals and issues of digital twin development for complex technological processes. In Proceedings of the International DAAAM Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia, 8–11 November 2017; pp. 523–528. [Google Scholar] [CrossRef]
- Redelinghuys, A.; Basson, A.; Kruger, K. A Six-Layer Digital Twin Architecture for a Manufacturing Cell. In Service Orientation in Holonic and Multi-Agent Manufacturing; Borangiu, T., Trentesaux, D., Thomas, A., Cavalieri, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 412–423. [Google Scholar]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Chang, V.; Sharma, S.; Li, C.S. Smart cities in the 21st century. Technol. Forecast. Soc. Change 2020, 153, 119447. [Google Scholar] [CrossRef]
- Zimit, A.Y.; Jibril, M.M.; Azimi, M.S.; Abba, S.I. Hybrid predictive based control of precipitation in a water-scarce region: A focus on the application of intelligent learning for green irrigation in agriculture sector. J. Saudi Soc. Agric. Sci. 2023, 22, 524–534. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Argente García, J.E.; Skarmeta Gómez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K. Smart Irrigation Monitoring and Control. In Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inf. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Oks, S.J.; Jalowski, M.; Lechner, M.; Mirschberger, S.; Merklein, M.; Vogel-Heuser, B.; Möslein, K.M. Cyber-Physical Systems in the Context of Industry 4.0: A Review, Categorization and Outlook. Inf. Syst. Front. 2022, 26, 1731–1772. [Google Scholar] [CrossRef]
- Janani, N.; Kannan, B.; Nagarajan, K.; Thiyagarajan, G.; Duraisamy, M.R. Soil moisture mapping for different land-use patterns of lower Bhavani river basin using vegetative index and land surface temperature. Env. Dev. Sustain. 2024, 26, 4533–4549. [Google Scholar] [CrossRef]
- Arafa, Y.; El-Gindy, A.-G.M.; El-Shirbeny, M.; Bourouah, M.; Abd-ElGawad, A.M.; Rashad, Y.M.; Hafez, M.; Youssef, M.A. Improving the spatial deployment of the soil moisture sensors in smart irrigation systems using GIS. Cogent Food Agric. 2024, 10, 2361124. [Google Scholar] [CrossRef]
- Tsai, P.H.; Huang, Y.; Tai, J.H. Estimating soil water content from thermal images with an artificial neural network. Catena 2024, 241, 108029. [Google Scholar] [CrossRef]
- Sciullo, L.; De Marchi, A.; Trotta, A.; Montori, F.; Bononi, L.; Di Felice, M. Relativistic Digital Twin: Bringing the IoT to the future. Future Gener. Comput. Syst. 2024, 153, 521–536. [Google Scholar] [CrossRef]
- Kim, S.; Heo, S. An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture. Nat. Commun. 2024, 15, 1561. [Google Scholar] [CrossRef]
- Sorri, K.; Mustafee, N.; Seppänen, M. Revisiting IoT definitions: A framework towards comprehensive use. Technol. Forecast. Soc. Change 2022, 179, 121623. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Al-Turjman, F.; Treiblmaier, H. The Interplay between the Internet of Things and agriculture: A bibliometric analysis and research agenda. Internet Things 2022, 19, 100580. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Zappa, L.; Schlaffer, S.; Brocca, L.; Vreugdenhil, M.; Nendel, C.; Dorigo, W. How accurately can we retrieve irrigation timing and water amounts from (satellite) soil moisture? Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102979. [Google Scholar] [CrossRef]
- Alam, M.S.; Lamb, D.W.; Rahman, M.M. A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Comput. Electron. Agric. 2018, 147, 12–17. [Google Scholar] [CrossRef]
- Awada, H.; Sirca, C.; Marras, S.; Castellini, M.; Spano, D.; Pirastru, M. Modelling soil moisture and daily actual evapotranspiration: Integrating remote sensing surface energy balance and 1D Richards equation. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103744. [Google Scholar] [CrossRef]
- Rodrigues, H.; Ceddia, M.B.; Tassinari, W.; Vasques, G.M.; Brandão, Z.N.; Morais, J.P.S.; Oliveira, R.P.; Neves, M.L.; Tavares, S.R.L. Remote and Proximal Sensors Data Fusion: Digital Twins in Irrigation Management Zoning. Sensors 2024, 24, 5742. [Google Scholar] [CrossRef]
- Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Appl. Sci. 2021, 11, 5911. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Menenti, M.; Hu, G.; Lu, J.; Chen, Q.; Jiang, M.; Mancini, M.; Corbari, C. Integrating hydrologic modeling and satellite remote sensing to assess the performance of sprinkler irrigation. Geo-Spat. Inf. Sci. 2024, 27, 934–952. [Google Scholar] [CrossRef]
- Qian, X.; Qi, H.; Shang, S.; Wan, H.; Wang, R. Estimating distributed autumn irrigation water use in a large irrigation district by combining machine learning with water balance models. Comput. Electron. Agric. 2024, 224, 109110. [Google Scholar] [CrossRef]
- Daneshgar, S.; Polesel, F.; Borzooei, S.; Sørensen, H.R.; Peeters, R.; Weijers, S.; Nopens, I.; Torfs, E. A full-scale operational digital twin for a water resource recovery facility—A case study of Eindhoven Water Resource Recovery Facility. Water Environ. Res. 2024, 96, e11016. [Google Scholar] [CrossRef]
- Sharifi, A.; Tarlani Beris, A.; Sharifzadeh Javidi, A.; Nouri, M.; Gholizadeh Lonbar, A.; Ahmadi, M. Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Adv. Eng. Inform. 2024, 61, 102485. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Texeira, M.; Tomasel, F. Hybrid modeling for grassland productivity prediction: A parametric and machine learning technique for grazing management with applicability to digital twin decision systems. Agric. Syst. 2024, 214, 103847. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Kim, Y.; Kang, J. Participatory Framework for Urban Pluvial Flood Modeling in the Digital Twin Era. Sustain. Cities Soc. 2024, 108, 105496. [Google Scholar] [CrossRef]
- Camps, A.; López-Martínez, C.; Gonga, A.; Gracia, G.; Perez-Portero, A.; Alonso-Gonzalez, A.; Vall-Llossera, M.; Park, H.; Perez, V.; Caselles, O.; et al. AI4WATER: A Digital Twin for Irrigated Agriculture. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 3545–3548. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Wangere, J.; Sinde, R.; Ally, M.; Mbwambo, O. A Digital Twin Approach and Challenges for Real-Time Automated Surface-Drip Irrigation Monitoring: A Case of Arusha Tanzania. In Smart and Secure Embedded and Mobile Systems; Jorge, M.G., Sam, A.E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 47–59. [Google Scholar]
- Monteiro, J.; Barata, J.; Veloso, M.; Veloso, L.; Nunes, J. A scalable digital twin for vertical farming. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 13981–13996. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production; CRC Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Jans-Singh, M.; Leeming, K.; Choudhary, R.; Girolami, M. Digital twin of an urban-integrated hydroponic farm. Data-Centric Eng. 2020, 1, e20. [Google Scholar] [CrossRef]
- Ropokis, A.; Ntatsi, G.; Kittas, C.; Katsoulas, N.; Savvas, D. Effects of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy 2019, 9, 110. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics—Integrating Fish and Plant Culture. In Aquaculture Production Systems; Wiley: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulfiqar, S.; Ghandar, A.; Chen, Y.; Hanai, M.; Theodoropoulos, G. Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems. In Methods and Applications for Modeling and Simulation of Complex Systems; Gary, T., Lehmann, A., Tym, C.W., Eds.; Springer: Singapore, 2019; pp. 3–14. [Google Scholar]
- Skobelev, P.; Laryukhin, V.; Simonova, E.; Goryanin, O.; Yalovenko, V.; Yalovenko, O. Developing a smart cyber-physical system based on digital twins of plants. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 522–527. [Google Scholar] [CrossRef]
- Skobelev, P.; Tabachinskiy, A.; Simonova, E.; Goryanin, O. Development of crop-simulation multiagent system for smart digital twin of plant. In Proceedings of the 2022 8th International Conference on Information Technology and Nanotechnology, ITNT 2022, Samara, Russian Federation, 23–27 May 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Mitsanis, C.; Hurst, W.; Tekinerdogan, B. A 3D functional plant modelling framework for agricultural digital twins. Comput. Electron. Agric. 2024, 218, 108733. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Boyes, H.; Watson, T. Digital twins: An analysis framework and open issues. Comput. Ind. 2022, 143, 103763. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar] [CrossRef]
- van Dinter, R.; Tekinerdogan, B.; Catal, C. Predictive maintenance using digital twins: A systematic literature review. Inf. Softw. Technol. 2022, 151, 107008. [Google Scholar] [CrossRef]
- Momber, A.W.; Möller, T.; Langenkämper, D.; Nattkemper, T.W.; Brün, D. A Digital Twin concept for the prescriptive maintenance of protective coating systems on wind turbine structures. Wind. Eng. 2022, 46, 949–971. [Google Scholar] [CrossRef]
- Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive analytics: Literature review and research challenges. Int. J. Inf. Manag. 2020, 50, 57–70. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How Smart, Connected Products Are Transforming Companies. Harv. Bus. Rev. 2015, 93, 96–114. [Google Scholar]
- Verdouw, C.N.; Wolfert, J.; Beulens, A.J.M.; Rialland, A. Virtualization of food supply chains with the internet of things. J. Food Eng. 2016, 176, 128–136. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Bellvert, J.; Pelechá, A.; Pamies-Sans, M.; Virgili, J.; Torres, M.; Casadesús, J. Assimilation of Sentinel-2 Biophysical Variables into a Digital Twin for the Automated Irrigation Scheduling of a Vineyard. Water 2023, 15, 2506. [Google Scholar] [CrossRef]
- Rahman, H.; Shah, U.M.; Riaz, S.M.; Kifayat, K.; Moqurrab, S.A.; Yoo, J. Digital twin framework for smart greenhouse management using next-gen mobile networks and machine learning. Future Gener. Comput. Syst. 2024, 156, 285–300. [Google Scholar] [CrossRef]
- Manocha, A.; Sood, S.K.; Bhatia, M. IoT-digital twin-inspired smart irrigation approach for optimal water utilization. Sustain. Comput. Inform. Syst. 2024, 41, 100947. [Google Scholar] [CrossRef]
- Zohdi, T.I. A machine-learning enabled digital-twin framework for next generation precision agriculture and forestry. Comput. Methods Appl. Mech. Eng. 2024, 431, 117250. [Google Scholar] [CrossRef]
- Chitu, C.; Imbrea, I.; Batrina, S.; Imbrea, F. Developing a digitaltwin model for corn, wheat and rapeseed yields computation. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2024, 24, 287–294. [Google Scholar]
- Batarseh, F.A.; Kulkarni, A.; Sreng, C.; Lin, J.; Maksud, S. ACWA: An AI-driven cyber-physical testbed for intelligent water systems. Water Pract. Technol. 2023, 18, 3399–3418. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Mahmoud, M.M.M.; Darwish, R.; Bassiuny, A.M. Development of an economic smart aquaponic system based on IoT. J. Eng. Res. 2023, 12, 886–894. [Google Scholar] [CrossRef]
- Sung, Y.M.; Kim, T. Smart farm realization based on digital twin. ICIC Express Lett. Part B Appl. 2022, 13, 421–427. [Google Scholar] [CrossRef]
- Reyes Yanes, A.; Abbasi, R.; Martinez, P.; Ahmad, R. Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems. Sensors 2022, 22, 7393. [Google Scholar] [CrossRef]
- de Campos Souza, P.V. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature. Appl. Soft Comput. 2020, 92, 106275. [Google Scholar] [CrossRef]
- European Commission. Technology Readiness Levels (TRL). Horizon 2020–Work Programme 2014–2015 General Annexes, Extract from Part 19-Commission Decision C 2014. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf (accessed on 29 July 2024).
- Héder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Volume 22. Available online: https://www.researchgate.net/publication/350942366_From_NASA_to_EU_the_evolution_of_the_TRL_scale_in_Public_Sector_Innovation (accessed on 29 July 2024).
- Thorp, K.R.; Ale, S.; Bange, M.P.; Barnes, E.M.; Hoogenboom, G.; Lascano, R.J.; McCarthy, A.C.; Nair, S.; Paz, J.O.; Rajan, N.; et al. AGRONOMY & SOILS Development and Application of Process-based Simulation Models for Cotton Production: A Review of Past, Present, and Future Directions. J. Cotton Sci. 2014, 18, 10–47. [Google Scholar]
- Barkakoti, C.; Joshi, S. Advancement of Digital Twin in Irrigation and Smart Farming. In Proceedings of the 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 23–25 March 2023; pp. 1245–1250. [Google Scholar] [CrossRef]
- Xue, J.; Zhou, S.; Wang, W.; Huo, L.; Zhang, L.; Fang, X.; Yang, Z. Water availability effects on plant growth, seed yield, seed quality in Cassia obtusifolia L., a medicinal plant. Agric. Water Manag. 2018, 195, 104–113. [Google Scholar] [CrossRef]
- Hong, S.S.; Lee, J.; Chung, S.; Kim, B. Fast Real-Time Data Process Analysis Based on NoSQL for IoT Pavement Quality Management Platform. Appl. Sci. 2023, 13, 658. [Google Scholar] [CrossRef]
- Uzougbo, O.I.; Olanrewaju, O.A.; Kayode, A.K. Node-RED and IoT Analytics: A Real-Time Data Processing and Visualization Platform. (TSJPAS) A Subsid. Tech-Sphere Multidiscip. Int. J. (TSMIJ) 2024, 1, 3672–4648. [Google Scholar] [CrossRef]
- Kobi, J. Developing Dashboard Analytics and Visualization Tools for Effective Performance Management and Continuous Process Improvement. Int. J. Innov. Sci. Res. Technol. (IJISRT) 2024, 9, 1697–1709. [Google Scholar] [CrossRef]
- Raschka, S.; Patterson, J.; Nolet, C. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information 2020, 11, 193. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O. Instrumentation and Measurement Systems: Digital Twin for Horticulture Farm: Concept and Requirements. IEEE Instrum. Meas. Mag. 2025, 28, 14–22. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Deb, N.C.; Tamrakar, N.; Kang, D.Y.; Kang, M.Y.; Kook, J.; Basak, J.K.; Kim, H.T. From Reality to Virtuality: Revolutionizing Livestock Farming Through Digital Twins. Agriculture 2024, 14, 2231. [Google Scholar] [CrossRef]
- Jin, T.; Han, X. Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Comput. Electron. Agric. 2024, 221, 108938. [Google Scholar] [CrossRef]
- Sindakis, S.; Showkat, G. The digital revolution in India: Bridging the gap in rural technology adoption. J. Innov. Entrep. 2024, 13, 29. [Google Scholar] [CrossRef]
- Manivasagam, V.S. From Bytes to Farm: Transferability of Industrial Digital Twins in Agricultural Systems. J. Biosyst. Eng. 2025, 50, 130–144. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, B.; Meng, Z.; Chen, L.; Liu, M.; Zhang, Y.; Zhang, B.; Wen, C. Construction method and case study of digital twin system for combine harvester. Comput. Electron. Agric. 2024, 226, 109395. [Google Scholar] [CrossRef]
Case No | Application | Environment | Type of DT | Reference | Author |
---|---|---|---|---|---|
1 | Irrigation | Soil–water | Predictive | [93] | Alves et al. |
2 | Irrigation | Soil–water | Predictive | [94] | Bellvert et al. |
3 | Irrigation | Air–humidity | Predictive | [95] | Rahman et al. |
4 | Irrigation | Soil–water | Predictive | [96] | Manocha et al. |
5 | Plant Water | Soil–water | Predictive | [97] | Zohdi |
6 | Plant Water | Soil–water | Predictive | [98] | Chitu et al. |
7 | Vertical Farming | Soil–water Water Quality | Predictive | [99] | Batarseh et al. |
8 | Aquaponics | Water Quality | Predictive | [100] | Ghandar et al. |
9 | Aquaponics | Water Quality | Monitoring | [101] | Mahmoud et al. |
10 | Hydroponics | Soil–water | Monitoring | [102] | Sung et al. |
11 | Hydroponic | Water Quality | Predictive | [103] | Reyes Yanes et al. |
TRL No | Technology Readiness Level Description | Maturity |
---|---|---|
1 | Basic principles observed | Conceptual Phase |
2 | Technology concept formulated | |
3 | Experimental proof of concept | Prototype Phase |
4 | Technology validated in lab | |
5 | Technology validated in relevant environment | |
6 | Technology demonstrated in relevant environment | |
7 | System prototype demonstration in operational environment | Deployed Phase |
8 | System complete and qualified | |
9 | Actual system proven in operational environment |
Case No | Application | AI Integration | DT Maturity Level | Technology Used | Reference | Author |
---|---|---|---|---|---|---|
1 | Irrigation | Fuzzy Inference algorithm used to determine irrigation recommendation | Prototype | IoT Sensors, actuators, FIWARE IoT platform, plant simulation using SQL database, Programmable Logic Controller (PLC), Open Platform Communications Unified Architecture (OPC UA) servers, Sprinkles, Grafana for data analysis, OPC UA server to simulate irrigation system | [93] | Alves et al. |
2 | Irrigation | ML used to measure land surface temperature | Prototype | Soil moisture sensor, irrigation decision support system (DSS) using soil water balance simulations, satellite images using Sentinel, fraction of intercepted photosynthetically active radiation (fIPAR) | [94] | Bellvert et al. |
3 | Irrigation | Artificial Neural Networks (ANNs), Random Forest (RF), Support Vector Machine (SVM), and Adaptive Boosting used for irrigation management | Prototype | Sensors (temp, moisture,), IBM Watson as IoT platform | [95] | Rahman et al. |
4 | Irrigation | Adaptive Neuro-Fuzzy Inference System (ANFIS) used to calculate irrigation requirement | Prototype | IoT, thermal imaging for evapotranspiration, Ubidots as IoT platform | [96] | Manocha et al. |
5 | Plant Water | Genetic Algorithms (GAs) | Prototype | Satellite images, LiDAR, physics engine | [97] | Zohdi |
6 | Plant Water | No Information | Prototype | Satellite images, sensors (soil, moisture) | [98] | Chitu et al. |
7 | Vertical farming | AI used but no mention of any specific technique | Prototype | Sensors (pH, temp, EC, water level, water flow, nitrate, turbidity, soil probes), cyber–physical system, ACWA simulator | [99] | Batarseh et al. |
8 | Aquaponics | Linear regression (LR), Support Vector Regression (SVR), XGB, CART decision trees models used to determine system variables | Prototype | Sensors (temp, DO, pH, light intensity, EC,0), IoT platform, cyber–physical system, Dynamic Data-Driven Application System (DDDAS) | [100] | Ghandar et al. |
9 | Aquaponics | No information about ML | Prototype | Sensors (PH, temp, DO, light, pumps, and actuators), Raspberry pi as IoT platform, Firebase | [101] | Mahmoud et al. |
10 | Hydroponics | No information about ML | Prototype | Sensors (temp, DO, pH, light intensity, EC), big data analytics, cyber–physical system, Secure Multi-Crop Smart Irrigation System (SMCSIS) | [102] | Sung et al. |
11 | Hydroponics | DL is used to estimate growth rate and weight of plants | Prototype | Sensors (temp, DO, pH, light intensity, EC,), CropKing® NFT Desktop System, Raspberry pi as IoT platform. | [103] | Reyes Yanes et al. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsen, R.; Di Bitonto, P.; Novielli, P.; Magarelli, M.; Romano, D.; Diacono, D.; Monaco, A.; Amoroso, N.; Bellotti, R.; Tangaro, S. Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review. Appl. Sci. 2025, 15, 4228. https://doi.org/10.3390/app15084228
Ahsen R, Di Bitonto P, Novielli P, Magarelli M, Romano D, Diacono D, Monaco A, Amoroso N, Bellotti R, Tangaro S. Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review. Applied Sciences. 2025; 15(8):4228. https://doi.org/10.3390/app15084228
Chicago/Turabian StyleAhsen, Rameez, Pierpaolo Di Bitonto, Pierfrancesco Novielli, Michele Magarelli, Donato Romano, Domenico Diacono, Alfonso Monaco, Nicola Amoroso, Roberto Bellotti, and Sabina Tangaro. 2025. "Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review" Applied Sciences 15, no. 8: 4228. https://doi.org/10.3390/app15084228
APA StyleAhsen, R., Di Bitonto, P., Novielli, P., Magarelli, M., Romano, D., Diacono, D., Monaco, A., Amoroso, N., Bellotti, R., & Tangaro, S. (2025). Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review. Applied Sciences, 15(8), 4228. https://doi.org/10.3390/app15084228