Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Technological Treatment
2.2.1. Convective Drying
2.2.2. Infrared–Convective Drying
2.2.3. Grinding of Dried Material
2.3. Physical Properties of Insect Powders
2.3.1. Water Content and Water Activity
2.3.2. Hygroscopicity
2.3.3. Particle Size
2.3.4. Flowability
2.3.5. Color Properties
2.4. Measurement of Techno-Functional Properties of Insect Powders
2.5. FTIR Measurement
2.6. Mathematical Modeling
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Content, Water Activity, and Hygroscopicity of Insect Powders
3.2. Bulk Density and Flowability of Insect Powders
3.3. Color Properties of Insect Powders
3.4. Techno-Functional Properties of Insect Powders
3.5. FTIR of Insect Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Convective drying |
IR–CD | Infrared–convective drying |
HR | Hausner ratio |
WHC | Water-holding capacity |
OHC | Oil-holding capacity |
FTIR | Fourier transform infrared spectroscopy |
ATR | Attenuated total reflectance accessory |
BET | Brunauer–Emmett–Teller sorption model |
GAB | Guggenheim–Anderson–de Boer sorption model |
References
- Szulc, K. Edible Insects: A Study of the Availability of Insect-Based Food in Poland. Sustainability 2023, 15, 14964. [Google Scholar] [CrossRef]
- Villa, C.; Moura, M.B.M.V.; Teixeira, C.S.S.; Costa, J.; Mafra, I. Monitoring Yellow Mealworm (Tenebrio molitor) as a Potential Novel Allergenic Food: Effect of Food Processing and Matrix. Nutrients 2023, 15, 482. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, V.M.; Enriquez-Vara, J.N.; Urías-Silva, J.E.; Mojica, L. Edible Insects: Techno-Functional Properties Food and Feed Applications and Biological Potential. Food Rev. Int. 2022, 38, 866–892. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B. Comparison of Functional Properties of Edible Insects and Protein Preparations Thereof. LWT 2018, 91, 168–174. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.; Egas-Montenegro, E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021, 23, 100304. [Google Scholar] [CrossRef]
- Żbik, K.; Górska-Horczyczak, E.; Onopiuk, A.; Kurek, M.; Zalewska, M. Vacuum and Convection Drying Effects on Volatile Compounds Profile and Physicochemical Properties of Selected Herbs from Lamiaceae Family. Eur. Food Res. Technol. 2023, 249, 2569–2581. [Google Scholar] [CrossRef]
- Hernández-Álvarez, A.-J.; Mondor, M.; Piña-Domínguez, I.-A.; Sánchez-Velázquez, O.-A.; Melgar Lalanne, G. Drying Technologies for Edible Insects and Their Derived Ingredients. Dry. Technol. 2021, 39, 1991–2009. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Janowicz, M.; Karwacka, M.; Galus, S.; Kowalska, J.; Gańko, K. The Effect of Hybrid Drying Methods on the Quality of Dried Carrot. Appl. Sci. 2022, 12, 10588. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Tsonas, T.; Katsimichas, A.; Limnaios, A.; Katsaros, G.; Taoukis, P. Pulsed Electric Fields-Assisted Drying and Frying of Fresh Zucchini. Food Bioproc. Technol. 2021, 14, 2091–2106. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, X.; Yagoub, A.E.A.; Fakayode, O.A.; Ma, H.; Sun, Y.; Zhou, C. Combinative Effect of Cutting Orientation and Drying Techniques (Hot Air, Vacuum, Freeze and Catalytic Infrared Drying) on the Physicochemical Properties of Ginger (Zingiber Officinale Roscoe). LWT 2021, 144, 111238. [Google Scholar] [CrossRef]
- Guclu, G.; Keser, D.; Kelebek, H.; Keskin, M.; Emre Sekerli, Y.; Soysal, Y.; Selli, S. Impact of Production and Drying Methods on the Volatile and Phenolic Characteristics of Fresh and Powdered Sweet Red Peppers. Food Chem. 2021, 338, 128129. [Google Scholar] [CrossRef]
- Jeevarathinam, G.; Pandiselvam, R.; Pandiarajan, T.; Preetha, P.; Balakrishnan, M.; Thirupathi, V.; Kothakota, A. Infrared Assisted Hot Air Dryer for Turmeric Slices: Effect on Drying Rate and Quality Parameters. LWT 2021, 144, 111258. [Google Scholar] [CrossRef]
- Yao, L.; Fan, L.; Duan, Z. Effect of Different Pretreatments Followed by Hot-Air and Far-Infrared Drying on the Bioactive Compounds, Physicochemical Property and Microstructure of Mango Slices. Food Chem. 2020, 305, 125477. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Guo, X.; Guo, Y.; Ma, H.; Zhou, C. Enhancing Jackfruit Infrared Drying by Combining Ultrasound Treatments: Effect on Drying Characteristics, Quality Properties and Microstructure. Food Chem. 2021, 358, 129845. [Google Scholar] [CrossRef] [PubMed]
- Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S.C. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12, 381–398. [Google Scholar] [CrossRef]
- Qadri, T.; Naik, H.R.; Hussain, S.Z.; Naseer, B.; Bhat, T.; Vijaykumar; Wani, F.J. Spray Dried Apple Powder: Qualitative, Rheological, Structural Characterization and Its Sorption Isotherm. LWT 2022, 165, 113694. [Google Scholar] [CrossRef]
- Szulc, K.; Nazarko, J.; Ostrowska-Ligęza, E.; Lenart, A. Effect of Fat Replacement on Flow and Thermal Properties of Dairy Powders. LWT-Food Sci. Technol. 2016, 68, 653–658. [Google Scholar] [CrossRef]
- Rin-ut, S.; Rattanapitigorn, P. Effect of Foaming Agents on Process Conditions, Characteristics, and Stability of Foam-mat Freeze-dried Pandan (Pandanus amaryllifolius) Powder. J. Food Process Preserv. 2020, 44, e14690. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Seephua, N.; Prakitchaiwattana, C.; Liu, R.-X.; Zheng, J.-S.; Siriamornpun, S. Fortification of Cricket and Silkworm Pupae Powders to Improve Nutritional Quality and Digestibility of Rice Noodles. Food Chem. X 2025, 26, 102279. [Google Scholar] [CrossRef]
- Wieczorek, M.; Kowalczewski, P.; Drabińska, N.; Różańska, M.; Jeleń, H. Effect of Cricket Powder Incorporation on the Profile of Volatile Organic Compounds, Free Amino Acids and Sensory Properties of Gluten-Free Bread. Pol. J. Food Nutr. Sci. 2022, 72, 431–442. [Google Scholar] [CrossRef]
- Kowalski, S.; Gumul, D.; Oracz, J.; Rosicka-Kaczmarek, J.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Zborowski, M. Chemical Composition, Antioxidant Properties and Sensory Aspects of Sponge Cakes Supplemented with Edible Insect Flours. Antioxidants 2023, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- Smarzyński, K.; Sarbak, P.; Kowalczewski, P.Ł.; Różańska, M.B.; Rybicka, I.; Polanowska, K.; Fedko, M.; Kmiecik, D.; Masewicz, Ł.; Nowicki, M.; et al. Low-Field NMR Study of Shortcake Biscuits with Cricket Powder, and Their Nutritional and Physical Characteristics. Molecules 2021, 26, 5417. [Google Scholar] [CrossRef] [PubMed]
- Mihaly Cozmuta, A.; Nicula, C.; Peter, A.; Mihaly Cozmuta, L.; Nartea, A.; Kuhalskaya, A.; Pacetti, D.; Silvi, S.; Fiorini, D.; Pruteanu, L. Cricket and Yellow Mealworm Powders Promote Higher Bioaccessible Fractions of Mineral Elements in Functional Bread. J. Funct. Foods 2022, 99, 105310. [Google Scholar] [CrossRef]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of Protein Fractions from the House Cricket (Acheta domesticus) and Yellow Mealworm (Tenebrio molitor) for Pasta Formulation. LWT 2022, 164, 113638. [Google Scholar] [CrossRef]
- Bogusz, R.; Latoszewska, M.; Szymańska, I.; Jaworska, D.; Szulc, K.; Lipińska, E.; Florowska, A.; Nowacka, M.; Pietrzak, D. The Assessment of the Possibility of Using Yellow Mealworm Powder in Chicken and Pork Pâté Production. Appl. Sci. 2024, 14, 9038. [Google Scholar] [CrossRef]
- Son, Y.-J.; Lee, J.-C.; Hwang, I.-K.; Nho, C.W.; Kim, S.-H. Physicochemical Properties of Mealworm (Tenebrio molitor) Powders Manufactured by Different Industrial Processes. LWT 2019, 116, 108514. [Google Scholar] [CrossRef]
- Zielińska, E. Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules 2022, 27, 6339. [Google Scholar] [CrossRef]
- Vanqa, N.; Mshayisa, V.V.; Basitere, M. Proximate, Physicochemical, Techno-Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours. Foods 2022, 11, 976. [Google Scholar] [CrossRef]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B. Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods 2022, 11, 724. [Google Scholar] [CrossRef]
- Pornsuwan, R.; Pootthachaya, P.; Bunchalee, P.; Hanboonsong, Y.; Cherdthong, A.; Tengjaroenkul, B.; Boonkum, W.; Wongtangtintharn, S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals 2023, 13, 2244. [Google Scholar] [CrossRef]
- Bogusz, R.; Nowacka, M.; Bryś, J.; Rybak, K.; Szulc, K. Quality Assessment of Yellow Mealworm (Tenebrio molitor L.) Powders Processed by Pulsed Electric Field and Convective Drying. Sci. Rep. 2024, 14, 27792. [Google Scholar] [CrossRef] [PubMed]
- Gondek, E.; Lewicki, P.P. Kinetics of Water Vapour Sorption by Selected Ingredients of Muesli-Type Mixtures. Pol. J. Food Nutr. Sci. 2007, 57, 23–26. [Google Scholar]
- Sui, Y.; Yang, J.; Ye, Q.; Li, H.; Wang, H. Infrared, Convective, and Sequential Infrared and Convective Drying of Wine Grape Pomace. Dry. Technol. 2014, 32, 686–694. [Google Scholar] [CrossRef]
- Gao, J.; Cheng, S.; Zeng, X.; Sun, X.; Bai, Y.; Hu, S.; Yue, J.; Yu, X.; Zhang, M.; Xu, X.; et al. Effects of Contact Ultrasound Coupled with Infrared Radiation on Drying Kinetics, Water Migration and Physical Properties of Beef during Hot Air Drying. Ultrason. Sonochem 2024, 108, 106978. [Google Scholar] [CrossRef]
- Shi, S.; Feng, J.; An, G.; Kong, B.; Wang, H.; Pan, N.; Xia, X. Dynamics of Heat Transfer and Moisture in Beef Jerky during Hot Air Drying. Meat Sci. 2021, 182, 108638. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pan, Z.; Takeoka, G.; Mackey, B.; Bingol, G.; Brandl, M.T.; Garcin, K.; McHugh, T.H.; Wang, H. Shelf-Life of Infrared Dry-Roasted Almonds. Food Chem. 2013, 138, 671–678. [Google Scholar] [CrossRef]
- Joseph Bassey, E.; Cheng, J.-H.; Sun, D.-W. Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds of Red Dragon Fruit (Hylocereus Species) by Novel Infrared Drying. Food Chem. 2022, 375, 131886. [Google Scholar] [CrossRef]
- Deepika, S.; Sutar, P.P. Spectral Selective Infrared Heating of Food Components Based on Optical Characteristics and Penetration Depth: A Critical Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 10749–10771. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Obielodan, M.; Sismour, E.; Arnett, A.; Alzahrani, S.; Zhang, B. Physicochemical, Functional, Thermal and Structural Properties of Isolated Kabuli Chickpea Proteins as Affected by Processing Approaches. Int. J. Food Sci. Technol. 2017, 52, 1147–1154. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Zhang, C.; Zhen, S.; Jia, W. Role of Mid- and Far-Infrared for Improving Dehydration Efficiency in Beef Jerky Drying. Dry. Technol. 2018, 36, 283–293. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods; Wiley: Hoboken, NJ, USA, 2007; pp. 239–271. [Google Scholar]
- Chaiyasit, W.; Elias, R.J.; McClements, D.J.; Decker, E.A. Role of Physical Structures in Bulk Oils on Lipid Oxidation. Crit. Rev. Food Sci. Nutr. 2007, 47, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, D.; Lachi, D.; Geheniau, H.; Goovaerts, V.; van der Zweep, P.; Groffils, C.; Thijs, M.; Van Der Borght, M. Dielectric Drying of Black Soldier Fly Larvae (Hermetia illucens): Impact on Microbiological Product Quality, Safety and Stability. J. Insects Food Feed. 2024, 1, 1–11. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Germer, S.P.M.; de Aguirre, J.M. Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Dry. Technol. 2012, 30, 154–163. [Google Scholar] [CrossRef]
- Bogusz, R.; Bryś, J.; Onopiuk, A.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods. Molecules 2023, 28, 8121. [Google Scholar] [CrossRef]
- Lewicki, P.P. Water as the Determinant of Food Engineering Properties. A Review. J. Food Eng. 2004, 61, 483–495. [Google Scholar] [CrossRef]
- Tańska, M.; Browarek, J.; Ruszkowska, M.; Purkiewicz, A. Comparative Study on the Incorporation of Lesser Mealworm (Alphitobius diaperinus) and House Cricket (Acheta domesticus) Powders into Shortbread Cookies: Effects on Physical, Chemical and Sensory Properties. Pol. J. Food Nutr. Sci. 2024, 2024, 280–292. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, Y.; Yang, J.; Jiang, N.; Wang, Q.; Chu, D.-T.; Han, Y.; Zhou, J. Thermodynamic Sorption Properties, Water Plasticizing Effect and Particle Characteristics of Blueberry Powders Produced from Juices, Fruits and Pomaces. Powder Technol. 2018, 323, 208–218. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van Der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Tanga, C.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Moisture Adsorption Properties and Shelf-Life Estimation of Dried and Pulverised Edible House Cricket Acheta domesticus (L.) and Black Soldier Fly Larvae Hermetia illucens (L.). Food Res. Int. 2018, 106, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Necochea Velazco, O.; Lakemond, C.; Dekker, M.; Cadesky, L.; Mishyna, M. Differences in Moisture Sorption Characteristics and Browning of Lesser Mealworm (Alphitobius diaperinus) Ingredients. LWT 2021, 142, 110989. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Chen, S.-C.; Wang, Q.-L.; Liu, C.-Q.; Xiao, J.-H.; Huang, D.-W. Effects of Traditional Grinding and Superfine Grinding Technologies on the Properties and Volatile Components of Protaetia brevitarsis Larvae Powder. LWT 2023, 173, 114307. [Google Scholar] [CrossRef]
- Pawar, S.B.; Pratape, V.M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2017, 40, e12308. [Google Scholar] [CrossRef]
- Long, G.; Ji, Y.; Pan, H.; Sun, Z.; Li, Y.; Qin, G. Characterization of Thermal Denaturation Structure and Morphology of Soy Glycinin by FTIR and SEM. Int. J. Food Prop. 2015, 18, 763–774. [Google Scholar] [CrossRef]
- Ando, Y.; Watanabe, T.; Orikasa, T.; Tomita, S. Structural Differences Between Hot Air-Dried and Freeze-Dried Two-Spotted Cricket (Gryllus bimaculatus), House Cricket (Acheta domesticus), and Silkworm (Bombyx mori) Larvae and Their Effect on Powder Properties After Grinding. Food Bioproc Technol. 2023, 1, 1958–1969. [Google Scholar] [CrossRef]
- Chanadang, S.; Mingyai, S.; Charoenthaikij, P.; Sathapornprasath, K.; Supan, Y.; Wayupap, D.; Itthisoponkul, T. Topic: Physicochemical, Functional and Antioxidant Properties of Cricket Protein Powders Produced by Microwave-Assisted Spouted Bed Drying. Future Foods 2024, 10, 100480. [Google Scholar] [CrossRef]
- Ferraz-Albani, L.A.; Baldelli, A.; Knapp, C.J.; Jäger, W.; Vehring, R.; Nobes, D.S.; Olfert, J.S.; Kostiuk, L.W. Enhanced Evaporation of Microscale Droplets With an Infrared Laser. J. Heat. Transf. 2017, 139, 011503. [Google Scholar] [CrossRef]
- Obeid, S.; Guyomarc’h, F.; Francius, G.; Guillemin, H.; Wu, X.; Pezennec, S.; Famelart, M.-H.; Cauty, C.; Gaucheron, F.; Lopez, C. The Surface Properties of Milk Fat Globules Govern Their Interactions with the Caseins: Role of Homogenization and PH Probed by AFM Force Spectroscopy. Colloids Surf. B Biointerfaces 2019, 182, 110363. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Langrish, T.A.G. Releasing Fat in Whole Milk Powder during Fluidized Bed Drying. Dry. Technol. 2012, 30, 1081–1087. [Google Scholar] [CrossRef]
- Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of Particle Properties on Powder Bulk Behaviour and Processability. Int. J. Pharm. 2017, 518, 138–154. [Google Scholar] [CrossRef]
- Fitzpatrick, J. Powder Properties in Food Production Systems. In Handbook of Food Powders; Elsevier: Amsterdam, The Netherlands, 2013; pp. 285–308. [Google Scholar]
- Bhavsar, P.; Fontana, G.D.; Tonin, C.; Patrucco, A.; Zoccola, M. Superheated Water Hydrolyses of Waste Silkworm Pupae Protein Hydrolysate: A Novel Application for Natural Dyeing of Silk Fabric. Dye. Pigment. 2020, 183, 108678. [Google Scholar] [CrossRef]
- Ushakova, N.; Dontsov, A.; Sakina, N.; Bastrakov, A.; Ostrovsky, M. Antioxidative Properties of Melanins and Ommochromes from Black Soldier Fly Hermetia illucens. Biomolecules 2019, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Tobolková, B.; Takáč, P.; Mangová, B.; Kozánek, M. A Comparative Study of Colour Characteristics of Thermally/Non-Thermally Treated Mealworm Larvae (Tenebrio molitor) by Means of UV/Vis Spectroscopy and Multivariate Analysis. J. Food Meas. Charact. 2021, 15, 3791–3799. [Google Scholar] [CrossRef]
- Ssepuuya, G.; Nakimbugwe, D.; De Winne, A.; Smets, R.; Claes, J.; Van Der Borght, M. Effect of Heat Processing on the Nutrient Composition, Colour, and Volatile Odour Compounds of the Long-Horned Grasshopper Ruspolia Differens Serville. Food Res. Int. 2020, 129, 108831. [Google Scholar] [CrossRef] [PubMed]
- Shehu, U.E.; Chow, T.Q.; Hafid, H.S.; Mokhtar, M.N.; Baharuddin, A.S.; Nawi, N.M. Kinetics of Thermal Hydrolysis of Crude Palm Oil with Mass and Heat Transfer in a Closed System. Food Bioprod. Process. 2019, 118, 187–197. [Google Scholar] [CrossRef]
- Schön, A.; Clarkson, B.R.; Siles, R.; Ross, P.; Brown, R.K.; Freire, E. Denatured State Aggregation Parameters Derived from Concentration Dependence of Protein Stability. Anal. Biochem. 2015, 488, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.A.; Pereira, S.M.S.; Dias, K.A.; Paes, S.d.S.; Grancieri, M.; Jimenez, L.G.S.; de Carvalho, C.W.P.; de Oliveira, E.E.; Martino, H.S.D.; Della Lucia, C.M. Nutritional Content, Amino Acid Profile, and Protein Properties of Edible Insects (Tenebrio molitor and Gryllus assimilis) Powders at Different Stages of Development. J. Food Compos. Anal. 2024, 125, 105804. [Google Scholar] [CrossRef]
- Brena-Melendez, A.; Garcia-Amezquita, L.E.; Liceaga, A.; Pascacio-Villafán, C.; Tejada-Ortigoza, V. Novel Food Ingredients: Evaluation of Commercial Processing Conditions on Nutritional and Technological Properties of Edible Cricket (Acheta domesticus) and Its Derived Parts. Innov. Food Sci. Emerg. Technol. 2024, 92, 103589. [Google Scholar] [CrossRef]
- Stone, A.K.; Tanaka, T.; Nickerson, M.T. Protein Quality and Physicochemical Properties of Commercial Cricket and Mealworm Powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef]
- Ndiritu, A.; Kinyuru, J.; Onyango, A.; Kipkoech, C. Functional and Microstructural Characteristics of Chitin Extracted from Field Cricket, House Cricket, and Black Soldier Fly Cocoons. J. Food Meas. Charact. 2023, 17, 5903–5912. [Google Scholar] [CrossRef]
- Hirsch, A.; Cho, Y.-H.; Kim, Y.H.B.; Jones, O.G. Contributions of Protein and Milled Chitin Extracted from Domestic Cricket Powder to Emulsion Stabilization. Curr. Res. Food Sci. 2019, 1, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Alagappan, S.; Ma, S.; Nastasi, J.R.; Hoffman, L.C.; Cozzolino, D. Evaluating the Use of Vibrational Spectroscopy to Detect the Level of Adulteration of Cricket Powder in Plant Flours: The Effect of the Matrix. Sensors 2024, 24, 924. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, N.; Mellado-Carretero, J.; Bengoa, C.; Salvador, A.; Sanz, T.; Wang, J.; Ferrando, M.; Güell, C.; Lamo-Castellví, S. de ATR-FTIR Spectroscopy Combined with Multivariate Analysis Successfully Discriminates Raw Doughs and Baked 3D-Printed Snacks Enriched with Edible Insect Powder. Foods 2021, 10, 1806. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.S.; Regnard, M.; Jessen, F.; Mohammadifar, M.A.; Sloth, J.J.; Petersen, H.O.; Ajalloueian, F.; Brouzes, C.M.C.; Fraihi, W.; Fallquist, H.; et al. Physico-Chemical and Colloidal Properties of Protein Extracted from Black Soldier Fly (Hermetia illucens) Larvae. Int. J. Biol. Macromol. 2021, 186, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Bolat, B.; Ugur, A.E.; Oztop, M.H.; Alpas, H. Effects of High Hydrostatic Pressure Assisted Degreasing on the Technological Properties of Insect Powders Obtained from Acheta Domesticus & Tenebrio Molitor. J. Food Eng. 2021, 292, 110359. [Google Scholar] [CrossRef]
- Matsakidou, A.; Sarivasiliou, S.-I.; Pissia, M.-A.; Rumbos, C.I.; Athanassiou, C.G.; Paraskevopoulou, A. Compositional, Volatile, and Structural Features of Hermetia illucens (Black Soldier Fly) Flours: The Effect of Population and Life Stages. Future Foods 2024, 9, 100320. [Google Scholar] [CrossRef]
Treatment | Water Content (g H2O/g d.m.) | Water Activity (−) | Hygroscopicity After 72 h (g H2O/100 g d.m.) |
---|---|---|---|
CD | 0.048 a 1 ± 0.005 | 0.177 a ± 0.009 | 41.13 a ± 1.76 |
IR–CD | 0.137 b ± 0.014 | 0.246 b ± 0.009 | 50.95 b ± 0.79 |
Treatment | Equilibrium Water Content (g H2O/100 g d.m.) | Effective Moisture Diffusivity (×10−11 m2/min) | R2 (−) | RMS (%) |
---|---|---|---|---|
CD | 45.48 a 1 ± 2.28 | 1.40 b ± 0.03 | 0.999 | 2.50 |
IR–CD | 58.04 b ± 2.67 | 1.17 a ± 0.11 | 0.997 | 3.34 |
Treatment | Particle Size (µm) | Loose Bulk Density (kg/m3) | Tapped Bulk Density (kg/m3) | Hausner Ratio (−) |
---|---|---|---|---|
CD | 631.91 b 1 ± 45.34 | 339.11 a ± 2.04 | 391.28 a ± 2.35 | 1.15 a ± 0.01 |
IR–CD | 241.86 a ± 26.10 | 352.73 b ± 2.02 | 421.67 b ± 4.41 | 1.20 a ± 0.09 |
Treatment | L* (−) | a* (−) | b* (−) |
---|---|---|---|
CD | 29.72 b 1 ± 1.13 | 5.82 a ± 0.19 | 10.94 b ± 0.38 |
IR–CD | 23.91 a ± 1.05 | 6.22 b ± 0.31 | 8.89 a ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogusz, R.; Nowacka, M.; Gondek, E.; Delman, M.; Szulc, K. Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae. Appl. Sci. 2025, 15, 4097. https://doi.org/10.3390/app15084097
Bogusz R, Nowacka M, Gondek E, Delman M, Szulc K. Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae. Applied Sciences. 2025; 15(8):4097. https://doi.org/10.3390/app15084097
Chicago/Turabian StyleBogusz, Radosław, Małgorzata Nowacka, Ewa Gondek, Murat Delman, and Karolina Szulc. 2025. "Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae" Applied Sciences 15, no. 8: 4097. https://doi.org/10.3390/app15084097
APA StyleBogusz, R., Nowacka, M., Gondek, E., Delman, M., & Szulc, K. (2025). Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae. Applied Sciences, 15(8), 4097. https://doi.org/10.3390/app15084097