Infill Pattern and Density of 3D-Printed Insoles Alter Energy and Pressure Distribution in Gait
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Mechanical Properties Test
2.3. Insole Fabrication
2.4. Plantar Pressure Measurement
2.5. Gait Data Analysis
3. Results
3.1. Mechanical Property Testing
3.2. Plantar Pressure in Gait
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global Epidemiology of Diabetic Foot Ulceration: A Systematic Review and Meta-Analysis. Ann. Med. 2017, 49, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Backhouse, M.R.; Bruce, J. Rehabilitation for People Wearing Offloading Devices for Diabetes-Related Foot Ulcers: A Systematic Review and Meta-Analyses. J. Foot Ankle Res. 2023, 16, 16. [Google Scholar] [PubMed]
- Lim, J.Z.M.; Ng, N.S.L.; Thomas, C. Prevention and Treatment of Diabetic Foot Ulcers. J. R. Soc. Med. 2017, 110, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.; Mohanasundaram, T.; Karunakaran, D.; Gunasekaran, M.; Tiwari, R. Physiological and Pathophysiological Aspects of Diabetic Foot Ulcer and Its Treatment Strategies. Curr. Diabetes Rev. 2023, 19, e031122210617. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Bus, S.A. Off-Loading the Diabetic Foot for Ulcer Prevention and Healing. J. Vasc. Surg. 2010, 52, 37S–43S. [Google Scholar] [CrossRef]
- Peker, A.; Aydin, L.; Kucuk, S.; Ozkoc, G.; Cetinarslan, B.; Canturk, Z.; Selek, A. Additive Manufacturing and Biomechanical Validation of a Patient-Specific Diabetic Insole. Polym. Adv. Technol. 2020, 31, 988–996. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, J.-C. Exploring the Feasibility of Advanced Manufacturing for Mass Customization of Insoles in the Context of ESG. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 815–832. [Google Scholar] [CrossRef]
- Mancuso, M.; Bulzomì, R.; Mannisi, M.; Martelli, F.; Giacomozzi, C. 3D-Printed Insoles for People with Type 2 Diabetes: An Italian, Ambulatory Case Report on the Innovative Care Model. Diabetology 2023, 4, 339–355. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, P.; Ma, X.; Chen, W.M. 3D-Printed Insole Designs for Enhanced Pressure-Relief in Diabetic Foot Based on Functionally-Graded Stiffness Properties. In IFMBE Proceedings, Proceedings of the 12th Asian-Pacific Conference on Medical and Biological Engineering, Suzhou, China, 18–21 May 2023; Springer: Cham, Switzerland, 2024; Volume 104. [Google Scholar]
- Kumar, K.R.; Vinothkumar, P.; Soms, N. Investigation on the Development of Custom Foot Insole Using Soft Polylactic Acid by Fused Deposition Modelling Technique. J. Mater. Eng. Perform. 2023, 32, 1790–1796. [Google Scholar] [CrossRef]
- Jonnala, U.K.; Sankineni, R.; Ravi Kumar, Y. Design and Development of Fused Deposition Modeling (FDM) 3D-Printed Orthotic Insole by Using Gyroid Structure. J. Mech. Behav. Biomed. Mater. 2023, 145, 106005. [Google Scholar] [CrossRef]
- Koteswari, S.; Yeole, S.N. Development of 3D Printed Orthotic Device for Flat Foot Problem. Mater. Today Proc. 2021, 44, 2435–2441. [Google Scholar] [CrossRef]
- Kumar, R.; Sarangi, S.K. 3D Printed Customized Diabetic Foot Insoles with Architecture Designed Lattice Structures—A Case Study. Biomed. Phys. Eng. Express 2024, 10, 015019. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Lakhi, M.; Ranjbar, S.; Bodaghi, M. Custom Shoe Sole Design and Modeling Toward 3D Printing. Int. J. Bioprint 2021, 7, 169–178. [Google Scholar] [CrossRef]
- Hudak, Y.F.; Li, J.S.; Cullum, S.; Strzelecki, B.M.; Richburg, C.; Kaufman, G.E.; Abrahamson, D.; Heckman, J.T.; Ripley, B.; Telfer, S.; et al. A Novel Workflow to a Fabricate Patient-Specific 3D Printed Accommodative Foot Orthosis with Personalized Latticed Metamaterial. Med. Eng. Phys. 2022, 104, 103802. [Google Scholar] [CrossRef]
- Chatzistergos, P.E.; Gatt, A.; Formosa, C.; Farrugia, K.; Chockalingam, N. Optimised Cushioning in Diabetic Footwear Can Significantly Enhance Their Capacity to Reduce Plantar Pressure. Gait Posture 2020, 79, 244–250. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Ren, Z.; Ma, T.; Jia, Z.; Fang, S.; Jin, H. Comparative Study of the Effects of Customized 3D Printed Insole and Prefabricated Insole on Plantar Pressure and Comfort in Patients with Symptomatic Flatfoot. Med. Sci. Monit. 2019, 25, 3510–3519. [Google Scholar] [CrossRef]
- ASTM D575-91(2024); Standard Test Methods for Rubber Properties in Compression. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://store.astm.org/d0575-91r24.html (accessed on 6 March 2025).
- Faulí, A.C.; Andrés, C.L.; Rosas, N.P.; Fernández, M.J.; Parreño, E.M.; Barceló, C.O. Physical Evaluation of Insole Materials Used to Treat the Diabetic Foot. J. Am. Podiatr. Med. Assoc. 2008, 98, 229–238. [Google Scholar] [CrossRef]
- Nilsen, F.; Molund, M.; Lium, E.M.; Hvaal, K.H. Material Selection for Diabetic Custom Insoles: A Systematic Review of Insole Materials and Their Properties. JPO J. Prosthet. Orthot. 2022, 34, e131–e143. [Google Scholar] [CrossRef]
- Hellstrand Tang, U.; Zügner, R.; Lisovskaja, V.; Karlsson, J.; Hagberg, K.; Tranberg, R. Comparison of Plantar Pressure in Three Types of Insole given to Patients with Diabetes at Risk of Developing Foot Ulcers—A Two-Year, Randomized Trial. J. Clin. Transl. Endocrinol. 2014, 1, 121–132. [Google Scholar] [CrossRef]
- Chatzistergos, P.E.; Gatt, A.; Formosa, C.; Sinclair, J.K.; Chockalingam, N. Effective and Clinically Relevant Optimisation of Cushioning Stiffness to Maximise the Offloading Capacity of Diabetic Footwear. Diabetes Res. Clin. Pract. 2023, 204, 110914. [Google Scholar] [CrossRef]
- Orsu, B.; Shaik, Y.P. Compression Strength Analysis of Customized Shoe Insole with Different Infill Patterns Using 3D Printing. Open Access J. Sci. 2022, 9, 1–13. [Google Scholar] [CrossRef]
- Xiao, Y.; Yin, J.; Zhang, X.; An, X.; Xiong, Y.; Sun, Y. Mechanical Performance and Cushioning Energy Absorption Characteristics of Rigid Polyurethane Foam at Low and High Strain Rates. Polym. Test. 2022, 109, 107531. [Google Scholar] [CrossRef]
- Reddy, S.K.; Ferry, D.B.; Misra, A. Highly Compressible Behavior of Polymer Mediated Three-Dimensional Network of Graphene Foam. RSC Adv. 2014, 4, 50074–50080. [Google Scholar] [CrossRef]
- Melia, G.; Siegkas, P.; Levick, J.; Apps, C. Insoles of Uniform Softer Material Reduced Plantar Pressure Compared to Dual-Material Insoles during Regular and Loaded Gait. Appl. Ergon. 2021, 91, 103298. [Google Scholar] [CrossRef]
- Nouman, M.; Dissaneewate, T.; Leelasamran, W.; Chatpun, S. The Insole Materials Influence the Plantar Pressure Distributions in Diabetic Foot with Neuropathy during Different Walking Activities. Gait Posture 2019, 74, 154–161. [Google Scholar] [CrossRef]
- Zuñiga, J.; Moscoso, M.; Padilla-Huamantinco, P.G.; Lazo-Porras, M.; Tenorio-Mucha, J.; Padilla-Huamantinco, W.; Tincopa, J.P. Development of 3D-Printed Orthopedic Insoles for Patients with Diabetes and Evaluation with Electronic Pressure Sensors. Designs 2022, 6, 95. [Google Scholar] [CrossRef]
- Muir, B.C.; Li, J.-S.; Hudak, Y.F.; Kaufman, G.E.; Cullum, S.; Aubin, P.M. Evaluation of Novel Plantar Pressure-Based 3-Dimensional Printed Accommodative Insoles—A Feasibility Study. Clin. Biomech. 2022, 98, 105739. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Li, P.L.; Yick, K.L.; Li, N.W.; Jiao, J. Effects of Contoured Insoles with Different Materials on Plantar Pressure Offloading in Diabetic Elderly during Gait. Sci. Rep. 2022, 12, 15395. [Google Scholar] [CrossRef]
- Cheung, J.T.M.; Zhang, M. Parametric Design of Pressure-Relieving Foot Orthosis Using Statistics-Based Finite Element Method. Med. Eng. Phys. 2008, 30, 269–277. [Google Scholar] [CrossRef]
- Peng, Y.; Wong, D.W.-C.; Chen, T.L.-W.; Wang, Y.; Zhang, G.; Yan, F.; Zhang, M. Influence of Arch Support Heights on the Internal Foot Mechanics of Flatfoot during Walking: A Muscle-Driven Finite Element Analysis. Comput. Biol. Med. 2021, 132, 104355. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Bao, W.; Zhu, S.; Li, D.; Zhao, N.; Liu, C. Functional Gradient Structural Design of Customized Diabetic Insoles. J. Mech. Behav. Biomed. Mater. 2019, 94, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Jin, L. The Influence of Different Footwear Insole Stiffness on Center of Pressure and Ankle Kinematics during Walking: A Case Report. Biomechanics 2022, 2, 205–212. [Google Scholar] [CrossRef]
- Iacob, M.C.; Popescu, D.; Petcu, D.; Marinescu, R. Assessment of the Flexural Fatigue Performance of 3D-Printed Foot Orthoses Made from Different Thermoplastic Polyurethanes. Appl. Sci. 2023, 13, 12149. [Google Scholar] [CrossRef]
Demographics | |
---|---|
Age (years) | 23.10 ± 3.25 |
Gender (male/female) | 10/0 |
BMI (kg/m2) | 22.93 ± 1.43 |
Foot length (cm) | 25.52 ± 0.97 |
Side of dominant (left/right) | 0/10 |
Mean Plantar Pressure (kPa) | ||||||
---|---|---|---|---|---|---|
Infill Pattern | Hindfoot | Midfoot | Forefoot | |||
Left | Right | Left | Right | Left | Right | |
None | 58.21 ± 10.64 | 52.97 ± 5.10 | 16.43 ± 3.45 | 21.84 ± 8.46 | 58.06 ± 7.99 | 38.51 ± 11.15 |
Honeycomb | 51.80 ± 10.33 | 47.26 ± 8.31 | 19.26 ± 4.19 | 27.57 ± 10.75 | 56.99 ± 7.81 | 45.00 ± 14.82 |
Gyroid | 54.56 ± 9.67 | 46.27 ± 6.84 | 18.53 ± 2.54 | 26.81 ± 7.47 | 62.27 ± 8.96 | 40.46 ± 9.91 |
Insole | AUC (N·s) |
---|---|
None | 337.75 ± 45.31 |
Honeycomb | 377.40 ± 49.52 |
Gyroid | 374.43 ± 48.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatpun, S.; Dissaneewate, T.; Kwanyuang, A.; Nouman, M.; Srewaradachpisal, S.; Movrin, D. Infill Pattern and Density of 3D-Printed Insoles Alter Energy and Pressure Distribution in Gait. Appl. Sci. 2025, 15, 3916. https://doi.org/10.3390/app15073916
Chatpun S, Dissaneewate T, Kwanyuang A, Nouman M, Srewaradachpisal S, Movrin D. Infill Pattern and Density of 3D-Printed Insoles Alter Energy and Pressure Distribution in Gait. Applied Sciences. 2025; 15(7):3916. https://doi.org/10.3390/app15073916
Chicago/Turabian StyleChatpun, Surapong, Tulaya Dissaneewate, Atichart Kwanyuang, Muhammad Nouman, Satta Srewaradachpisal, and Dejan Movrin. 2025. "Infill Pattern and Density of 3D-Printed Insoles Alter Energy and Pressure Distribution in Gait" Applied Sciences 15, no. 7: 3916. https://doi.org/10.3390/app15073916
APA StyleChatpun, S., Dissaneewate, T., Kwanyuang, A., Nouman, M., Srewaradachpisal, S., & Movrin, D. (2025). Infill Pattern and Density of 3D-Printed Insoles Alter Energy and Pressure Distribution in Gait. Applied Sciences, 15(7), 3916. https://doi.org/10.3390/app15073916