Preparation of Magnetic Photocatalyst Fe3O4@SiO2@Fe-TiO2 and Photocatalytic Degradation Performance of Methyl Orange in Na2SO4 Solution
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Preparation of Nanocomposites
2.3. Characterization
2.4. Photodynamic Activity Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aghazadeh, M.; Hassani, A.H.; Borghei, M. Application of photocatalytic proxone process for petrochemical wastewater treatment. Sci. Rep. 2023, 13, 12738. [Google Scholar] [CrossRef] [PubMed]
- Sonia; Kumari, H.; Monica; Sharma, S.; Reenu; Kumar, R.; Suman; Chahal, S.; Kumar, S.; Kumar, P.; et al. UV-Irradiated Photocatalytic Activity of α-Fe2O3/ZnO Nanocomposites for Wastewater Treatment. J. Electron. Mater. 2024, 53, 5990–6002. [Google Scholar]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [PubMed]
- Ahasan, T.; Xu, P.; Wang, H. Dual-Function Photocatalysis in the Visible Spectrum: Ag-G-TiO2 for Simultaneous Dye Wastewater Degradation and Hydrogen Production. Catalysts 2024, 14, 530. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J. Structured Semiconductors in Photocatalysis. Catalysts 2023, 13, 1111. [Google Scholar] [CrossRef]
- Qiu, J.; Li, M.; Ding, M.; Yao, J. Cellulose tailored semiconductors for advanced photocatalysis. Renew. Sustain. Energy Rev. 2022, 154, 111820. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar]
- Carey, J.H.; Lawrence, J.; Tosine, H.M. Advances in photolysis of persistent organic pollutants in water. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar]
- Pruden, A.L.; Ollis, D.F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water. J. Catal. 1983, 82, 404–417. [Google Scholar]
- He, C.; He, J.; Cui, S.; Fan, X.; Li, S.; Yang, Y.; Tan, X.; Zhang, X.; Mao, J.; Zhang, L.; et al. Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying. Nanomaterials 2023, 13, 3123. [Google Scholar] [CrossRef]
- Xia, J.; Dong, L.; Song, H.; Yang, J.; Zhu, X. Preparation of doped TiO2 nanomaterials and their applications in photocatalysis. Bull. Mater. Sci. 2023, 46, 13. [Google Scholar] [CrossRef]
- Zhu, B.; Long, Y.; Zhu, Z.; Xu, B. Photocatalysis and Phase-Transition of Ca2+-Doped TiO2. Catal. Lett. 2023, 153, 3761–3770. [Google Scholar] [CrossRef]
- Morales-Lopez, N.; Gallegos-Cerda, S.; Arredondo-Tamayo, B.; Hernández-Varela, J.; Cervantes-Sodi, F.; Chanona-Perez, J. SEM Characterization of GG-CaCO3-TiO2 Composite Film for Its Application in Photocatalysis. Microsc. Microanal. 2024, 30, ozae044.640. [Google Scholar] [CrossRef]
- Nosrati, P.; Rahimi, R.; Hosseini-Kharat, M. Investigation of antibacterial photodynamic inactivation in urea-doped TiO2 sensitized with porphyrin photocatalysis. J. Porphyr. Phthalocyanines 2023, 27, 873–886. [Google Scholar] [CrossRef]
- Saroha, J.; Rani, E.; Devi, M.; Pathi, P.; Kumar, M.; Sharma, S.N. Plasmon-Assisted Photocatalysis of Organic Pollutants by Au/Ag-TiO2 Nanocomposites: A Comparative Study. Mater. Today Sustain. 2023, 23, 100466. [Google Scholar] [CrossRef]
- Sun, L.; Ouyang, X.; Li, Z.; Yuan, Z.; Gong, W.; Chen, Z.; Mei, S.; Liu, Y.; Zhou, Q. Preparation of Fe3O4@SiO2@N-TiO2 and Its Application for Photocatalytic Degradation of Methyl Orange in Na2SO4 Solution. Appl. Sci. 2024, 14, 5205. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, Q.; Mao, J.; Ouyang, X.; Yuan, Z.; Song, X.; Gong, W.; Mei, S.; Xu, W. Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets. Appl. Sci. 2022, 12, 3574. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl. Catal. B Environ. 2012, 123–124, 117–126. [Google Scholar] [CrossRef]
- Shi, S. Structural and optical properties of Fe-doped TiO2 films by sol–gel method. Mod. Phys. Lett. B 2020, 34, 2050345. [Google Scholar] [CrossRef]
- Popa, A.; Stefan, M.; Toloman, D.; Pana, O.; Mesaros, A.; Leostean, C.; Macavei, S.; Marincas, O.; Suciu, R.; Barbu-Tudoran, L. Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability. Powder Technol. 2018, 325, 441–451. [Google Scholar] [CrossRef]
- Liu, W.; Wei, C.; Wang, G.; Cao, X.; Tan, Y.; Hu, S. In situ synthesis of plasmonic TiO2 nanocomposites with enhanced visible photocatalytic performance. Ceram. Int. 2019, 45, 17884–17889. [Google Scholar] [CrossRef]
- Ma, J.-Q.; Guo, S.-B.; Guo, X.-H.; Ge, H.-G. Liquid-phase deposition of TiO2 nanoparticles on core–shell Fe3O4@SiO2 spheres: Preparation, characterization, and photocatalytic activity. J. Nanopart. Res. 2015, 17, 307. [Google Scholar] [CrossRef]
- Chen, D.; Wei, L.; Meng, L.P.; Wang, D.; Chen, Y.X.; Tian, Y.F.; Yan, S.S.; Mei, L.M.; Jiao, J. Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays. J. Alloys Compd. 2018, 751, 56–61. [Google Scholar] [CrossRef]
- Griffith, M.J.; Sunahara, K.; Wagner, P.; Wagner, K.; Wallace, G.G.; Officer, D.L.; Furube, A.; Katoh, R.; Mori, S.; Mozer, A.J. Porphyrins for dye-sensitised solar cells: New insights into efficiency-determining electron transfer steps. Chem. Commun. 2012, 48, 4145–4162. [Google Scholar] [CrossRef]
- Douven, S.; Mahy, J.G.; Wolfs, C.; Reyserhove, C.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Lambert, S.D. Efficient N, Fe Co-Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films. Catalysts 2020, 10, 547. [Google Scholar] [CrossRef]
- Ge, M.; Guo, C.; Zhu, X.; Ma, L.; Han, Z.; Hu, W.; Wang, Y. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Front. Environ. Sci. Eng. China 2009, 3, 271–280. [Google Scholar]
- Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dye. Pigment. 2008, 77, 327–334. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, F.; Zhang, W.; Li, R.; Zhong, H.; Zhao, Y.; Zhang, Y.; Wang, X. Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites. J. Hazard. Mater. 2009, 171, 294–300. [Google Scholar] [CrossRef]
- Mathews, N.R.; Corte Jacome, M.A.; Morales, E.R.; Toledo Antonio, J.A. Structural and Spectroscopic Study of the Fe Doped TiO₂ Thin Films for Applications in Photocatalysis. Phys. Status Solidi C 2009, 6, S219–S223. [Google Scholar]
- Esfandiari, N.; Kashefi, M.; Mirjalili, M.; Afsharnezhad, S. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3O4-SiO2-TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation. Mater. Sci. Eng. B 2020, 262, 114690. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. [Google Scholar]
- Sun, P.; Han, S.; Liu, J.; Zhang, J.; Yang, S.; Wang, F.; Liu, W.; Yin, S.; Ning, Z.; Cao, W. Introducing Oxygen Vacancies in TiO2 Lattice Through Trivalent Iron to Enhance the Photocatalytic Removal of Indoor NO. Int. J. Miner. Metall. Mater. 2023, 30, 2025–2035. [Google Scholar]
- Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X. Corn-like, Recoverable γ-Fe2O3@SiO2@TiO2 Photocatalyst Induced by Magnetic Dipole Interactions. Sci. Rep. 2017, 7, 6960. [Google Scholar]
- Sobczyk-Guzenda, A.; Owczarek, S.; Batory, D.; Balcerzak, J.; Gazicki-Lipman, M.; Szymanowski, H. The effect of thermal annealing on Fe/TiO2 coatings deposited with the help of RF PECVD method. Part I. Chemical and phase composition. Ceram. Int. 2017, 43, 3993–4004. [Google Scholar]
- Bapna, K.; Phase, D.M.; Choudhary, R.J. Study of valence band structure of Fe doped anatase TiO2 thin films. J. Appl. Phys. 2011, 110, 043910. [Google Scholar]
- V Zhu, Y. Enhanced photoelectrochemical properties of Fe-TiO2 nanotube films: A combined experimental and theoretical study. Int. J. Electrochem. Sci. 2021, 16, 210662. [Google Scholar]
- Elghniji, K.; Ksibi, M.; Elaloui, E. Sol-gel reverse micelle preparation and characterization of n-doped TiO2: Efficient photocatalytic degradation of methylene blue in water under visible light. J. Ind. Eng. Chem. 2012, 18, 178–182. [Google Scholar]
- Haryński, Ł.; Grochowska, K.; Kupracz, P.; Karczewski, J.; Coy, E.; Siuzdak, K. The in-depth studies of pulsed UV laser-modified TiO2 nanotubes: The influence of geometry, crystallinity, and processing parameters. Nanomaterials 2020, 10, 430. [Google Scholar] [CrossRef]
- Al-Rasheed, R.; Cardin, D.J. Photocatalytic degradation of humic acid in saline waters. Part 1: Artificial sea-water—Influence of TiO2, temperature, pH, and air-flow. Chemosphere 2003, 51, 925–933. [Google Scholar]
- Xia, R.; Wang, L.; Xiao, B.; Lei, L.; Zhu, J.; Liu, Z.; Xi, X.; Feng, G.; Li, R.; Feng, J. Effective removal of methylene blue on EuVO4/g-C3N4 mesoporous nanosheets via coupling adsorption and photocatalysis. Int. J. Mol. Sci. 2022, 23, 10003. [Google Scholar] [CrossRef]
- Rani, A.; Dhiman, R.L.; Kumar, S.; Kundu, V.S.; Kumar, S. Photocatalytic Degradation of Congo Red and Methyl Orange Dye Under Visible Light Using Silver and Iron Co-doped TiO2 Nanoparticles. Indian J. Pure Appl. Phys. 2022, 60, 325–334. [Google Scholar]
- Rafieezadeh, M.; Kianfar, A.H. Fabrication of heterojunction ternary Fe3O4/TiO2/CoMoO4 as a magnetic photocatalyst for organic dyes degradation under sunlight irradiation. J. Photochem. Photobiol. A Chem. 2022, 423, 113596. [Google Scholar]
Material | Initial Concentration of MO (mg/L) | Amount of Catalyst per mL (mg) | (MO) Degradation Time (min) and Degradation Rate | (MO-Na2SO4) Degradation Time (min) and Degradation Rate | Cyclic Average Degradation Rate |
---|---|---|---|---|---|
ATT-SnO2-TiO2 | 20 | 1 | 30 (99%) | none | none |
ZnO/TiO2 | 16 | 0.3 | 100 (98%) | none | none |
Pt-TiO2/zeolite | 20 | 2 | 90 (99%) | none | none |
FS-FT (0 g) | 10 | 2 | 25 (90.25%) | 25 (92.38%) | 86.08% |
FS-FT (0.36 g) | 10 | 2 | 25 (99%) | 25 (97.16%) | 96.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Li, Z.; Yuan, Z.; Liu, Y.; Mei, S.; Meng, F.; Ouyang, X.; Xiong, Y.; Zhang, K.; Chen, Z. Preparation of Magnetic Photocatalyst Fe3O4@SiO2@Fe-TiO2 and Photocatalytic Degradation Performance of Methyl Orange in Na2SO4 Solution. Appl. Sci. 2025, 15, 3781. https://doi.org/10.3390/app15073781
Sun L, Li Z, Yuan Z, Liu Y, Mei S, Meng F, Ouyang X, Xiong Y, Zhang K, Chen Z. Preparation of Magnetic Photocatalyst Fe3O4@SiO2@Fe-TiO2 and Photocatalytic Degradation Performance of Methyl Orange in Na2SO4 Solution. Applied Sciences. 2025; 15(7):3781. https://doi.org/10.3390/app15073781
Chicago/Turabian StyleSun, Li, Zilong Li, Zhigang Yuan, Ying Liu, Shunqi Mei, Fanhe Meng, Xingyu Ouyang, Yi Xiong, Ke Zhang, and Zhen Chen. 2025. "Preparation of Magnetic Photocatalyst Fe3O4@SiO2@Fe-TiO2 and Photocatalytic Degradation Performance of Methyl Orange in Na2SO4 Solution" Applied Sciences 15, no. 7: 3781. https://doi.org/10.3390/app15073781
APA StyleSun, L., Li, Z., Yuan, Z., Liu, Y., Mei, S., Meng, F., Ouyang, X., Xiong, Y., Zhang, K., & Chen, Z. (2025). Preparation of Magnetic Photocatalyst Fe3O4@SiO2@Fe-TiO2 and Photocatalytic Degradation Performance of Methyl Orange in Na2SO4 Solution. Applied Sciences, 15(7), 3781. https://doi.org/10.3390/app15073781