Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes
Abstract
:1. Introduction
- Evaluation of the contrast optimization using polarimetric SAR images acquired by multiple sensors operating at different frequency bands: L-, C-, and X-band.
- Proposal of a formulation for the dual-polarimetric case (which is not detailed in the original formulation [31]), which will allow us to compare the optimization using both dual- and quad-polarimetric images.
- Comparison of the performance provided by different combinations of polarimetric channels in the dual-pol case.
2. Theory: Rank-1 Polarimetric Contrast Enhancement for Ship Detection
2.1. Quad-Polarimetric Case
2.2. Dual-Polarimetric Case
3. Datasets
4. Results
4.1. Results with Quad-Polarimetric Data
4.2. Results with Dual-Polarimetric Data
4.2.1. Enhancement Performance with X-Band Dual-Pol Data
4.2.2. Enhancement Performance with C-Band Dual-Pol Data
4.2.3. Enhancement Performance with L-Band Dual-Pol Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ao, W.; Xu, F.; Li, Y.; Wang, H. Detection and Discrimination of Ship Targets in Complex Background From Spaceborne ALOS-2 SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; van Schie, B. Ship Surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1092–1103. [Google Scholar] [CrossRef]
- Dai, H.; Du, L.; Wang, Y.; Wang, Z. A Modified CFAR Algorithm Based on Object Proposals for Ship Target Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1925–1929. [Google Scholar] [CrossRef]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A Bilateral CFAR Algorithm for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Wang, C.; Guo, B.; Song, J.; He, F.; Li, C. A Novel CFAR-Based Ship Detection Method Using Range-Compressed Data for Spaceborne SAR System. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Lu, S.; Xiang, D.; Su, Y. Fast Superpixel-Based Non-Window CFAR Ship Detector for SAR Imagery. Remote Sens. 2022, 14, 2092. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Chen, H.; Li, Y. A Density Clustering-Based CFAR Algorithm for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Li, H.C.; Krylov, V.A.; Fan, P.Z.; Zerubia, J.; Emery, W.J. Unsupervised Learning of Generalized Gamma Mixture Model with Application in Statistical Modeling of High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2153–2170. [Google Scholar] [CrossRef]
- Zhu, X.X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep Learning Meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep Learning for SAR Ship Detection: Past, Present and Future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Yao, X.; Ren, J.; Han, J. Uncertainty Exploration: Toward Explainable SAR Target Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Zhang, J.; Gao, G.; Dai, Y.; Liu, G.; Jia, Y.; Wang, X.; Zhang, Y.; Bao, M. Evaluation and Improvement of Generalization Performance of SAR Ship Recognition Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9311–9326. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J. Learning Deep Ship Detector in SAR Images From Scratch. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4021–4039. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Cheng, P.; Yu, Z.; Yu, L.; Chi, C. A Survey on Deep-Learning-Based Real-Time SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3218–3247. [Google Scholar] [CrossRef]
- Alexandre, C.; Devillers, R.; Mouillot, D.; Seguin, R.; Catry, T. Ship Detection with SAR C-Band Satellite Images: A Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14353–14367. [Google Scholar] [CrossRef]
- Gierull, C.H.; Rashid, M. Indicating Ambiguous False Positives to Improve Wide-Area SAR Vessel Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Wahl, D.; Eichel, P.; Ghiglia, D.; Jakowatz, C. Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef]
- Xi, L.; Guosui, L.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1252. [Google Scholar] [CrossRef]
- Salvetti, F.; Martorella, M.; Giusti, E.; Staglianò, D. Multiview Three-Dimensional Interferometric Inverse Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 718–733. [Google Scholar] [CrossRef]
- Kumar, A.; Giusti, E.; Mancuso, F.; Ghio, S.; Lupidi, A.; Martorella, M. Three-Dimensional Polarimetric InISAR Imaging of Non-Cooperative Targets. IEEE Trans. Comput. Imaging 2023, 9, 210–223. [Google Scholar] [CrossRef]
- Touzi, R.; Raney, R.; Charbonneau, F. On the use of permanent symmetric scatterers for ship characterization. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2039–2045. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, F.; Tao, M.; Bai, X.; Shi, X.; Xu, H. An Automatic Ship Detection Method for PolSAR Data Based on K-Wishart Distribution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2725–2737. [Google Scholar] [CrossRef]
- Marino, A. A Notch Filter for Ship Detection with Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1219–1232. [Google Scholar] [CrossRef]
- Zhang, T.; Ji, J.; Li, X.; Yu, W.; Xiong, H. Ship Detection From PolSAR Imagery Using the Complete Polarimetric Covariance Difference Matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2824–2839. [Google Scholar] [CrossRef]
- Hajnsek, I.; Desnos, Y.L. Polarimetric Synthetic Aperture Radar: Principles and Application; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zhang, T.; Quan, S.; Yang, Z.; Guo, W.; Zhang, Z.; Gan, H. A Two-Stage Method for Ship Detection Using PolSAR Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Velotto, D.; Nunziata, F.; Migliaccio, M.; Lehner, S. Dual-Polarimetric TerraSAR-X SAR Data for Target at Sea Observation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1114–1118. [Google Scholar] [CrossRef]
- Shirvany, R.; Chabert, M.; Tourneret, J.Y. Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 885–892. [Google Scholar] [CrossRef]
- Mitsunobu Sugimoto, K.O.; Nakamura, Y. On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea. Remote Sens. Lett. 2013, 4, 843–852. [Google Scholar] [CrossRef]
- Marino, A.; Hajnsek, I. Statistical Tests for a Ship Detector Based on the Polarimetric Notch Filter. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4578–4595. [Google Scholar] [CrossRef]
- Cloude, S.R. Target Detection Using Rank-1 Polarimetric Processing. IEEE Geosci. Remote Sens. Lett. 2021, 18, 717–720. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Touzi, R.; Vachon, P.W.; Wolfe, J. Requirement on Antenna Cross-Polarization Isolation for the Operational Use of C-Band SAR Constellations in Maritime Surveillance. IEEE Geosci. Remote Sens. Lett. 2010, 7, 861–865. [Google Scholar] [CrossRef]
- Touzi, R.; Hurley, J.; Vachon, P.W. Optimization of the Degree of Polarization for Enhanced Ship Detection Using Polarimetric RADARSAT-2. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5403–5424. [Google Scholar] [CrossRef]
- Souyris, J.C.; Henry, C.; Adragna, F. On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2725–2734. [Google Scholar] [CrossRef]
- Brekke, C.; Anfinsen, S.N.; Larsen, Y. Subband Extraction Strategies in Ship Detection with the Subaperture Cross-Correlation Magnitude. IEEE Geosci. Remote Sens. Lett. 2013, 10, 786–790. [Google Scholar] [CrossRef]
- Marino, A.; Sanjuan-Ferrer, M.J.; Hajnsek, I.; Ouchi, K. Ship Detection with Spectral Analysis of Synthetic Aperture Radar: A Comparison of New and Well-Known Algorithms. Remote Sens. 2015, 7, 5416–5439. [Google Scholar] [CrossRef]
- Boerner, W.M.; Kostinski, A. On the concept of the polarimetric matched filter in high resolution radar imaging. In Proceedings of the 1988 IEEE AP-S. International Symposium, Antennas and Propagation, Syracuse, NY, USA, 6–10 June 1988; Volume 2, pp. 533–536. [Google Scholar] [CrossRef]
- Novak, L.; Sechtin, M.; Cardullo, M. Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 150–165. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Boerner, W.M.; Lin, S. Numerical methods for solving the optimal problem of contrast enhancement. IEEE Trans. Geosci. Remote Sens. 2000, 38, 965–971. [Google Scholar] [CrossRef]
- Liu, C.; Vachon, P.W.; Geling, G.W. Improved ship detection with airborne polarimetric SAR data. Can. J. Remote Sens. 2005, 31, 122–131. [Google Scholar] [CrossRef]
- Yang, D.; Du, L.; Liu, H.; Ni, W. Novel Polarimetric Contrast Enhancement Method Based on Minimal Clutter to Signal Ratio Subspace. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8570–8583. [Google Scholar] [CrossRef]
- Novak, L.; Burl, M. Optimal speckle reduction in polarimetric SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 293–305. [Google Scholar] [CrossRef]
- Lopes, A.; Sery, F. Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution. IEEE Trans. Geosci. Remote Sens. 1997, 35, 632–647. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Gao, G.; Yang, J.; Marino, A. CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter. IEEE Trans. Geosci. Remote Sens. 2020, 58, 58–81. [Google Scholar] [CrossRef]
- Marino, A.; Sugimoto, M.; Ouchi, K.; Hajnsek, I. Validating a Notch Filter for Detection of Targets at Sea with ALOS-PALSAR Data: Tokyo Bay. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4907–4918. [Google Scholar] [CrossRef]
Sensor | ALOS-1 | Radarsat-2 | PAZ | Sentinel-1 |
---|---|---|---|---|
Frequency Band | L | C | X | C |
Polarization | Quad: HH, HV, VH, VV | Quad: HH, HV, VH, VV | Dual: HH, VV; HH, VH; VH, VV | Dual: VV, VH |
Acquisition Date | 2008−10-09 | 2011-04-21 | 2024-12-01, 2024-12-12, 2024-12-23 | 2018-01-04 |
Incidence angle | 25° | 28° | 27° | 33° |
Pixel Spacing range × azimuth [m] | 9.37 × 3.59 | 4.70 × 5.10 | 1.44 × 2.99 | 2.3 × 17.4 |
Polarization | HH | HV | Optimum |
---|---|---|---|
Signal-to-Clutter Ratio [dB] | 15.26 | 21.37 | 43.32 |
Polarization | HH | HV | Optimum |
---|---|---|---|
Signal-to-Clutter Ratio [dB] | 14.84 | 27.59 | 33.46 |
Processed Polarimetric Channels | {HH,VV} | {HH, HV} | {VV,VH} | ||||||
---|---|---|---|---|---|---|---|---|---|
Signal-to-Clutter Ratio [dB] | HH | VV | OPT | HH | HV | OPT | VV | VH | OPT |
31.5 | 21.2 | 42.1 | 19.7 | 24.9 | 35.4 | 15.8 | 25.4 | 34.2 |
Processed Polarimetric Channels | {HH,VV} | {HH, HV} | {VV,VH} | ||||||
---|---|---|---|---|---|---|---|---|---|
Signal-to-Clutter Ratio [dB] | HH | VV | OPT | HH | HV | OPT | VV | VH | OPT |
14.84 | 13.22 | 29.15 | 14.84 | 27.59 | 37.45 | 13.22 | 27.47 | 37.65 |
Polarization | VV | VH | Optimum |
---|---|---|---|
Signal-to-Clutter Ratio [dB] | 22.21 | 26.13 | 34.85 |
Processed Polarimetric Channels | {HH,VV} | {HH, HV} | {VV,VH} | ||||||
---|---|---|---|---|---|---|---|---|---|
Signal-to-Clutter Ratio [dB] | HH | VV | OPT | HH | HV | OPT | VV | VH | OPT |
15.26 | 13.81 | 43.17 | 15.26 | 21.37 | 29.73 | 13.81 | 21.37 | 29.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestre-Quereda, A.; Lopez-Sanchez, J.M. Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes. Appl. Sci. 2025, 15, 3633. https://doi.org/10.3390/app15073633
Mestre-Quereda A, Lopez-Sanchez JM. Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes. Applied Sciences. 2025; 15(7):3633. https://doi.org/10.3390/app15073633
Chicago/Turabian StyleMestre-Quereda, Alejandro, and Juan M. Lopez-Sanchez. 2025. "Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes" Applied Sciences 15, no. 7: 3633. https://doi.org/10.3390/app15073633
APA StyleMestre-Quereda, A., & Lopez-Sanchez, J. M. (2025). Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes. Applied Sciences, 15(7), 3633. https://doi.org/10.3390/app15073633