Bioremediation of Crude Oil by Corynebacterium stationis CsPe-1: A Preliminary In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of the C. stationis CsPe-1 Strain
2.2. Substrate
2.3. Adaptation of the Bacteria to Crude Oil Medium
2.4. Preparation of Systems to Assess the Crude Oil Degradation
2.5. Evaluation of the Oil Degradation
2.5.1. Determination of Chemical Oxygen Demand (COD)
2.5.2. Determination of Biochemical Oxygen Demand (BOD5)
2.6. TPH Analysis by Gas Chromatography and Percentage of Reduction (%)
2.7. Genomic Sequencing and Characterization Analysis
2.8. Statistical Analysis
3. Results and Discussion
Genomic Characterization of C. stationis CsPe-1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moodley, P.; Trois, C. Lignocellulosic Biorefineries: The Path Forward. In Sustainable Biofuels; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–42. ISBN 9780128202975. [Google Scholar]
- Olah, G.A.; Molnar, A.; Surya Prakash, G.K. Hydrocarbon Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119390534. [Google Scholar]
- Rosen, M.A. Energy Sustainability with a Focus on Environmental Perspectives. Earth Syst. Environ. 2021, 5, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Enerijiofi, K.E. Bioremediation of Environmental Contaminants: A Sustainable Alternative to Environmental Management. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 461–480. ISBN 9780128205242. [Google Scholar]
- Bharadwaj, P.; Tripathi, D.; Pandey, S.; Tapadar, S.; Bhattacharjee, A.; Das, D.; Palwan, E.; Rani, M.; Kumar, A. Molecular Biology Techniques for the Detection of Contaminants in Wastewater. In Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 217–235. ISBN 9780128218815. [Google Scholar]
- Maria-Valeria, K.; Stylianos, T.; Vasiliki, P.; Doxakis, A.; Nikolaos, R.; Maria, L.; Pavlos, P. Petroleum Intoxication: Literature Review and Case Report on Poisoning by Gasoline. Soud. Lek. 2020, 65, 16–21. [Google Scholar] [PubMed]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef] [PubMed]
- Vandana; Priyadarshanee, M.; Mahto, U.; Das, S. Mechanism of Toxicity and Adverse Health Effects of Environmental Pollutants. In Microbial Biodegradation and Bioremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 33–53. ISBN 9780323854559. [Google Scholar]
- Ruberg, E.J.; Williams, T.D.; Elliott, J.E. Review of Petroleum Toxicity in Marine Reptiles. Ecotoxicology 2021, 30, 525–536. [Google Scholar] [CrossRef]
- Turner, N.R.; Renegar, D.A. Petroleum Hydrocarbon Toxicity to Corals: A Review. Mar. Pollut. Bull. 2017, 119, 1–16. [Google Scholar] [CrossRef]
- Gupta, P.K.; Mustapha, H.I.; Singh, B.; Sharma, Y.C. Bioremediation of Petroleum Contaminated Soil-Water Resources Using Neat Biodiesel: A Review. Sustain. Energy Technol. Assess. 2022, 53, 102703. [Google Scholar] [CrossRef]
- Ravi, A.; Ravuri, M.; Krishnan, R.; Narenkumar, J.; Anu, K.; Alsalhi, M.S.; Devanesan, S.; Kamala-Kannan, S.; Rajasekar, A. Characterization of Petroleum Degrading Bacteria and Its Optimization Conditions on Effective Utilization of Petroleum Hydrocarbons. Microbiol. Res. 2022, 265, 127184. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, H.; Zeng, F.; Jiang, L.; Atakpa, E.O.; Chen, G.; Zhang, C.; Xie, Q. A Biosurfactant-Producing Yeast Rhodotorula sp.CC01 Utilizing Landfill Leachate as Nitrogen Source and Its Broad Degradation Spectra of Petroleum Hydrocarbons. World J. Microbiol. Biotechnol. 2022, 38, 68. [Google Scholar] [CrossRef]
- Singh, M.; Jayant, K.; Mehra, A.; Bhutani, S.; Kaur, T.; Kour, D.; Suyal, D.C.; Singh, S.; Rai, A.K.; Yadav, A.N. Bioremediation—Sustainable Tool for Diverse Contaminants Management: Current Scenario and Future Aspects. J. Appl. Biol. Biotechnol. 2022, 48–63. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial Degradation of Petroleum Hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P.; Gao, X.; Li, F.; Li, H.; Yu, H. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution under Aerobic Conditions: A Perspective Analysis. Front. Microbiol. 2018, 9, 2885. [Google Scholar] [CrossRef] [PubMed]
- Osabohien, R. Editorial: Nutrition and Sustainable Development Goal 15: Life on Land. Front. Nutr. 2024, 11, 1453607. [Google Scholar] [CrossRef]
- Neumann, B.; Ott, K.; Kenchington, R. Strong Sustainability in Coastal Areas: A Conceptual Interpretation of SDG 14. Sustain. Sci. 2017, 12, 1019–1035. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, F.; Li, G.; Ruan, H.; Li, X.; Zhong, L.; Chen, G.; Rui, Y. Falsochrobactrum tianjinense sp. Nov., a New Petroleum-Degrading Bacteria Isolated from Oily Soils. Int. J. Environ. Res. Public Health 2022, 19, 11833. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Chandran, P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.K.; Tripathi, V.; Manickam, N. Bacterial- and Fungal-Mediated Biodegradation of Petroleum Hydrocarbons in Soil. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 407–427. ISBN 9780323858397. [Google Scholar]
- Masika, W.S.; Moonsamy, G.; Mandree, P.; Ramchuran, S.; Lalloo, R.; Kudanga, T. Biodegradation of Petroleum Hydrocarbon Waste Using Consortia of Bacillus sp. Bioremediat. J. 2021, 25, 72–79. [Google Scholar] [CrossRef]
- Al-Otibi, F.; Al-Zahrani, R.M.; Marraiki, N. The Crude Oil Biodegradation Activity of Candida Strains Isolated from Oil-Reservoirs Soils in Saudi Arabia. Sci. Rep. 2022, 12, 10708. [Google Scholar] [CrossRef]
- Benmessaoud, S.; Anissi, J.; Kara, M.; Assouguem, A.; AL-Huqail, A.A.; Germoush, M.O.; Ullah, R.; Ercisli, S.; Bahhou, J. Isolation and Characterization of Three New Crude Oil Degrading Yeast Strains, Candida Parapsilosis SK1, Rhodotorula Mucilaginosa SK2 and SK3. Sustainability 2022, 14, 3465. [Google Scholar] [CrossRef]
- Othman, A.R.; Ismail, N.S.; Abdullah, S.R.S.; Hasan, H.A.; Kurniawan, S.B.; Sharuddin, S.S.N.; Ismail, N.‘i. Potential of Indigenous Biosurfactant-Producing Fungi from Real Crude Oil Sludge in Total Petroleum Hydrocarbon Degradation and Its Future Research Prospects. J. Environ. Chem. Eng. 2022, 10, 107621. [Google Scholar] [CrossRef]
- Atakpa, E.O.; Zhou, H.; Jiang, L.; Ma, Y.; Liang, Y.; Li, Y.; Zhang, D.; Zhang, C. Improved Degradation of Petroleum Hydrocarbons by Co-Culture of Fungi and Biosurfactant-Producing Bacteria. Chemosphere 2022, 290, 133337. [Google Scholar] [CrossRef]
- Peixoto, R.S.; Vermelho, A.B.; Rosado, A.S. Petroleum-Degrading Enzymes: Bioremediation and New Prospects. Enzym. Res. 2011, 2011, 475193. [Google Scholar] [CrossRef] [PubMed]
- Elufisan, T.O.; Rodríguez-Luna, I.C.; Oyedara, O.O.; Sánchez-Varela, A.; Hernández-Mendoza, A.; Dantán Gonzalez, E.; Paz-González, A.D.; Muhammad, K.; Rivera, G.; Villalobos-Lopez, M.A.; et al. The Polycyclic Aromatic Hydrocarbon (PAH) Degradation Activities and Genome Analysis of a Novel Strain Stenotrophomonas sp. Pemsol Isolated from Mexico. PeerJ 2020, 8, e8102. [Google Scholar] [CrossRef] [PubMed]
- Arulazhagan, P.; Al-Shekri, K.; Huda, Q.; Godon, J.J.; Basahi, J.M.; Jeyakumar, D. Biodegradation of Polycyclic Aromatic Hydrocarbons by an Acidophilic Stenotrophomonas maltophilia Strain AJH1 Isolated from a Mineral Mining Site in Saudi Arabia. Extremophiles 2017, 21, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Gosai, H.B.; Panseriya, H.Z.; Patel, P.G.; Patel, A.C.; Shankar, A.; Varjani, S.; Dave, B.P. Exploring Bacterial Communities through Metagenomics during Bioremediation of Polycyclic Aromatic Hydrocarbons from Contaminated Sediments. Sci. Total Environ. 2022, 842, 156794. [Google Scholar] [CrossRef]
- Muangchinda, C.; Rungsihiranrut, A.; Prombutara, P.; Soonglerdsongpha, S.; Pinyakong, O. 16S Metagenomic Analysis Reveals Adaptability of a Mixed-PAH-Degrading Consortium Isolated from Crude Oil-Contaminated Seawater to Changing Environmental Conditions. J. Hazard. Mater. 2018, 357, 119–127. [Google Scholar] [CrossRef]
- Brooke, J.S.; Di Bonaventura, G.; Berg, G.; Martinez, J.-L. Editorial: A Multidisciplinary Look at Stenotrophomonas maltophilia: An Emerging Multi-Drug-Resistant Global Opportunistic Pathogen. Front. Microbiol. 2017, 8, 1511. [Google Scholar] [CrossRef]
- Bernard, K.A.; Wiebe, D.; Burdz, T.; Reimer, A.; Ng, B.; Singh, C.; Schindle, S.; Pacheco, A.L. Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the Genus Corynebacterium, as Corynebacterium stationis Comb. Nov., and Emended Description of the Genus Corynebacterium to Include Isolates That Can Alkalinize Citrate. Int. J. Syst. Evol. Microbiol. 2010, 60, 874–879. [Google Scholar] [CrossRef]
- Bernard, K. The Genus Corynebacterium. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128012383. [Google Scholar]
- Ray, D.; Anand, U.; Jha, N.K.; Korzeniewska, E.; Bontempi, E.; Proćków, J.; Dey, A. The Soil Bacterium, Corynebacterium glutamicum, from Biosynthesis of Value-Added Products to Bioremediation: A Master of Many Trades. Environ. Res. 2022, 213, 113622. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Zeynalipour, M.S.; Musa, F.H. Isolation and Characterization of Crude Oil Degrading Bacteria from the Persian Gulf (Khorramshahr Provenance). Mar. Pollut. Bull. 2014, 82, 39–44. [Google Scholar] [CrossRef]
- Dwivedi, A.; Kumar, A.; Bhat, J.L. Production and Characterization of Biosurfactant from Corynebacterium Species and Its Effect on the Growth of Petroleum Degrading Bacteria. Microbiology 2019, 88, 87–93. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Wang, L.; Liu, J.; Gurav, R.G.; Sun, K. A Novel Bioremediation Strategy for Petroleum Hydrocarbon Pollutants Using Salt Tolerant Corynebacterium Variabile HRJ4 and Biochar. J. Environ. Sci. 2016, 47, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Roy, P. Genomic Potential of Stenotrophomonas maltophilia in Bioremediation with an Assessment of Its Multifaceted Role in Our Environment. Front. Microbiol. 2016, 7, 967. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tan, X.; Guo, J.; Liang, X.; Xie, Q.; Chen, S. Bioremediation of Oil-Contaminated Soil by Combination of Soil Conditioner and Microorganism. J. Soils Sediments 2020, 20, 2121–2129. [Google Scholar] [CrossRef]
- Semai, A.; Plewniak, F.; Lledo, J.; Annonay, G.; Vandecasteele, C.; Lopez-Roques, C.; Bertin, P.N. Complete Genome Sequence of Stenotrophomonas maltophilia 1800, a New Bacterial Strain with Potential for Bioremediation of Oil-Contaminated Environments. Microbiol. Resour. Announc. 2022, 11, e0111621. [Google Scholar] [CrossRef]
- Rahman, K.S.M.; Rahman, T.; Lakshmanaperumalsamy, P.; Banat, I.M. Occurrence of Crude Oil Degrading Bacteria in Gasoline and Diesel Station Soils. J. Basic Microbiol. 2002, 42, 284–291. [Google Scholar] [CrossRef]
- Niño Camacho, L.; Torres Sáenz, R. Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas Pseudomonas Putida biodegradadoras de fenol. Rev. Ion Investig. Optim. Nuevos Procesos Ing. 2010, 23, 41–46. [Google Scholar]
- Otiniano, N.M.; Rojas-Villacorta, W.; De La Cruz-Noriega, M.; Lora-Cahuas, C.; Mendoza-Villanueva, K.; Benites, S.M.; Gallozzo-Cardenas, M.; Rojas-Flores, S. Effect of Inoculum Concentration on the Degradation of Diesel 2 by a Microbial Consortium. Sustainability 2022, 14, 16750. [Google Scholar] [CrossRef]
- Hernández castellanos, N.D. Establecimiento de Un Proceso de Biorremediación Usando Stenotrophomonas maltophilia, Universidad Veracruzana: México. 2016. Available online: https://www.uv.mx/pozarica/mca/general-3/generaciones/ (accessed on 15 March 2025).
- Olga, N.M. Demanda Bioquimica de Oxìgeno—5 Días, Incubaciòn Y Electrometrìa. Available online: http://www.ideam.gov.co/documents/14691/38155/Demanda+Bioquímica+de+Oxígeno..pdf/ca6e1594-4217-4aa3-9627-d60e5c077dfa (accessed on 19 November 2024).
- Jáuregui, S.; Robles, H. Effect of Inoculum Concentration of a Native Bacterial Consortium on the Degradation of Vinasse Nitrates from an Alcohol Distillery. Agroindustrial Sci. 2017, 7, 57–66. [Google Scholar] [CrossRef]
- Zafra, G.; Regino, R.; Agualimpia, B.; Aguilar, F. Molecular Characterization and Evaluation of Oil-Degrading Native Bacteria Isolated from Automotive Service Station Oil-Contaminated Soils. Chem. Eng. Trans. 2016, 49, 511–516. [Google Scholar] [CrossRef]
- Riedel, T.E.; Berelson, W.M.; Nealson, K.H.; Finkel, S.E. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions. Appl. Environ. Microbiol. 2013, 79, 4921–4931. [Google Scholar] [CrossRef]
- Bekele, G.K.; Gebrie, S.A.; Mekonen, E.; Fida, T.T.; Woldesemayat, A.A.; Abda, E.M.; Tafesse, M.; Assefa, F. Isolation and Characterization of Diesel-Degrading Bacteria from Hydrocarbon-Contaminated Sites, Flower Farms, and Soda Lakes. Int. J. Microbiol. 2022, 2022, 5655767. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, R.M.; Al-Otibi, F.; Marraiki, N.; Alharbi, R.I.; Aldehaish, H.A. Biodegradation of Petroleum Hydrocarbons by Drechsleraspicifera Isolated from Contaminated Soil in Riyadh, Saudi Arabia. Molecules 2022, 27, 6450. [Google Scholar] [CrossRef] [PubMed]
- Hazaimeh, M.D.; Ahmed, E.S. Bioremediation Perspectives and Progress in Petroleum Pollution in the Marine Environment: A Review. Environ. Sci. Pollut. Res. Int. 2021, 28, 54238–54259. [Google Scholar] [CrossRef] [PubMed]
- Enerijiofi, K.E.; Ahonsi, C.O.; Ajao, E.K. Biodegradation Potentials of Waste Engine Oil by Three Bacterial Isolates. J. Appl. Sci. Environ. Manag. 2020, 24, 489–493. [Google Scholar] [CrossRef]
- Astashkina, A.P.; Bakibayev, A.A.; Plotnikov, E.V.; Kolbysheva, Y.V.; Mukashev, A.B. Study of the Hydrocarbon-Oxidizing Activity of Bacteria of the Genera Pseudomonas and Rhodococcus. Procedia Chem. 2015, 15, 90–96. [Google Scholar] [CrossRef]
- Auffret, M.; Labbé, D.; Thouand, G.; Greer, C.W.; Fayolle-Guichard, F. Degradation of a Mixture of Hydrocarbons, Gasoline, and Diesel Oil Additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl. Environ. Microbiol. 2009, 75, 7774–7782. [Google Scholar] [CrossRef]
- Abbas, A.F.; Muhsen, M.A. Molecular Characterization of Some Lead Resistant Bacteria Isolated from Polluted Environments. AIP Conf. Proc. 2023, 2834, 020018. [Google Scholar]
- Saha, R.; Banerjee, D.B.; Manna, S.; Banerjee, S. Microbial Bioremediation: A Promising Approach to Withstand Heavy Metal Contamination in Soil and Its Future Possibilities. In Synergistic Approaches for Bioremediation of Environmental Pollutants: Recent Advances and Challenges; Elsevier: Amsterdam, The Netherlands, 2022; pp. 227–262. ISBN 9780323918602. [Google Scholar]
- Souza, E.C.; Vessoni-Penna, T.C.; de Souza Oliveira, R.P. Biosurfactant-Enhanced Hydrocarbon Bioremediation: An Overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Muthukamalam, S.; Sivagangavathi, S.; Dhrishya, D.; Sudha Rani, S. Characterization of Dioxygenases and Biosurfactants Produced by Crude Oil Degrading Soil Bacteria. Braz. J. Microbiol. 2017, 48, 637–647. [Google Scholar] [CrossRef]
- Pandolfo, E.; Barra Caracciolo, A.; Rolando, L. Recent Advances in Bacterial Degradation of Hydrocarbons. Water 2023, 15, 375. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.; Collier, L.S.; Neidle, E.L.; Moran, M.A. Key Aromatic-Ring-Cleaving Enzyme, Protocatechuate 3,4-Dioxygenase, in the Ecologically Important Marine Roseobacter Lineage. Appl. Environ. Microbiol. 2000, 66, 4662–4672. [Google Scholar] [CrossRef] [PubMed]
- Contzen, M.; Stolz, A. Characterization of the Genes for Two Protocatechuate 3,4-Dioxygenases from the 4-Sulfocatechol-Degrading Bacterium Agrobacterium Radiobacter Strain S2. J. Bacteriol. 2000, 182, 6123–6129. [Google Scholar] [CrossRef] [PubMed]
Parameter | Inoculum Concentration | |||
---|---|---|---|---|
Control | 10% | 15% | t (p-Value) | |
Oils and Fats (Initial) | 4154.00 | 4675.90 | 4297.72 | 1.734 (0.158) |
Oils and Fats (Final) | 4153.85 | 1813.27 | 1648.62 | 1.459 (0.218) |
t (p-value) | 14 (0.005) | 23.54 (0.002) |
Parameter | Control | 10% Inoculum | 15% Inoculum | t (p-Value) |
---|---|---|---|---|
BOD5 Initial (mg O2.L−1) | 160.0 | 15.8 | 52.2 | −4.06 (0.01) |
BOD5 Final (mg O2.L−1) | 160.5 | 44.1 | 52.9 | −11.16 (0.00) |
COD Initial (mg O2.L−1) | 20,400.0 | 18,200.0 | 26,800.0 | - |
COD Final (mg O2.L−1) | 21,600.0 | 26,800.0 | 28,200.0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Noriega, M.D.L.; Otiniano, N.M.; Rojas-Villacorta, W.; Rojas-Flores, S.; Cabanillas-Chirinos, L.; Abanto Marin, M. Bioremediation of Crude Oil by Corynebacterium stationis CsPe-1: A Preliminary In Vitro Study. Appl. Sci. 2025, 15, 3614. https://doi.org/10.3390/app15073614
Cruz-Noriega MDL, Otiniano NM, Rojas-Villacorta W, Rojas-Flores S, Cabanillas-Chirinos L, Abanto Marin M. Bioremediation of Crude Oil by Corynebacterium stationis CsPe-1: A Preliminary In Vitro Study. Applied Sciences. 2025; 15(7):3614. https://doi.org/10.3390/app15073614
Chicago/Turabian StyleCruz-Noriega, Magaly De La, Nélida Milly Otiniano, Walter Rojas-Villacorta, Segundo Rojas-Flores, Luis Cabanillas-Chirinos, and Michel Abanto Marin. 2025. "Bioremediation of Crude Oil by Corynebacterium stationis CsPe-1: A Preliminary In Vitro Study" Applied Sciences 15, no. 7: 3614. https://doi.org/10.3390/app15073614
APA StyleCruz-Noriega, M. D. L., Otiniano, N. M., Rojas-Villacorta, W., Rojas-Flores, S., Cabanillas-Chirinos, L., & Abanto Marin, M. (2025). Bioremediation of Crude Oil by Corynebacterium stationis CsPe-1: A Preliminary In Vitro Study. Applied Sciences, 15(7), 3614. https://doi.org/10.3390/app15073614