Stress Distribution in Radicular Dentin with Different Post and Core Materials: A 3D Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Pierrisnard, L.; Bohin, F.; Renault, P.; Barquins, M. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis. J. Prosthet. Dent. 2002, 88, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Juloski, J.; Apicella, D.; Ferrari, M. The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis. Dent. Mater. 2014, 30, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Batista, V.E.d.S.; Bitencourt, S.B.; Bastos, N.A.; Pellizzer, E.P.; Goiato, M.C.; dos Santos, D.M. Influence of the ferrule effect on the failure of fiber-reinforced composite post-and-core restorations: A systematic review and meta-analysis. J. Prosthet. Dent. 2020, 123, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ichim, I.; Kuzmanovic, D.V.; Love, R.M. A finite element analysis of ferrule design on restoration resistance and distribution of stress within a root. Int. Endod. J. 2006, 39, 443–452. [Google Scholar] [CrossRef]
- Oyar, P. The effects of post-core and crown material and luting agents on stress distribution in tooth restorations. J. Prosthet. Dent. 2014, 112, 211–219. [Google Scholar] [CrossRef]
- Lima, M.O.; Ferretti, M.A.; Caldas, R.A.; BarÃO, V.A.R.; FranÇA, F.M.G.; Lima, D.A.N.L.; Martins, L.R.; Aguiar, F.H.B. Application of polyetheretherketone (PEEK) posts: Evaluation of fracture resistance and stress distribution in the root: In vitro and finite element analyses. Braz. Oral Res. 2023, 37, e047. [Google Scholar] [CrossRef]
- Corrêa, G.; Brondani, L.P.; Wandscher, V.F.; Pereira, G.K.R.; Valandro, L.F.; Bergoli, C.D. Influence of remaining coronal thickness and height on biomechanical behavior of endodontically treated teeth: Survival rates, load to fracture and finite element analysis. J. Appl. Oral Sci. 2018, 26, e20170313. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Dessai, G.S. Factors affecting the fracture resistance of post-core reconstructed teeth: A review. Int. J. Prosthodont. 2001, 14, 355–363. [Google Scholar]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of ferrule and post placement on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2013, 41, 207–215. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Martorelli, M.; Lanzotti, A.; Zarone, F.; Watts, D.C.; Gloria, A. Mechanical behavior of endodontically restored canine teeth: Effects of ferrule, post material and shape. Dent. Mater. 2017, 33, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Santos-Filho, P.C.F.; Veríssimo, C.; Raposo, L.H.A.; Noritomi, M.P.Y.; Marcondes Martins, L.R. Influence of Ferrule, Post System, and Length on Stress Distribution of Weakened Root-filled Teeth. J. Endod. 2014, 40, 1874–1878. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chai, M.; Zhang, K.; Liu, J.; Li, X. Influence of restorative materials on the mechanical properties of maxillary first molars with different degrees of cryptic fractures and defects: A finite element analysis. Dent. Mater. J. 2024, 43, 97–105. [Google Scholar] [CrossRef]
- Mamoun, J.S. On the ferrule effect and the biomechanical stability of teeth restored with cores, posts, and crowns. Eur. J. Dent. 2019, 08, 281–286. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Engelman, M.J. Ferrule design and fracture resistance of endodontically treated teeth. J. Prosthet. Dent. 1990, 63, 529–536. [Google Scholar] [CrossRef]
- Juloski, J.; Radovic, I.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Ferrule Effect: A Literature Review. J. Endod. 2012, 38, 11–19. [Google Scholar] [CrossRef]
- Rodrigues, M.d.P.; Soares, P.B.F.; Valdivia, A.D.C.M.; Pessoa, R.S.; Veríssimo, C.; Versluis, A.; Soares, C.J. Patient-specific Finite Element Analysis of Fiber Post and Ferrule Design. J. Endod. 2017, 43, 1539–1544. [Google Scholar] [CrossRef]
- Jotkowitz, A.; Samet, N. Rethinking ferrule—A new approach to an old dilemma. Br. Dent. J. 2010, 209, 25–33. [Google Scholar] [CrossRef]
- Santana, F.R.; Castro, C.G.; Simamoto-Júnior, P.C.; Soares, P.V.; Quagliatto, P.S.; Estrela, C.; Soares, C.J. Influence of post system and remaining coronal tooth tissue on biomechanical behaviour of root filled molar teeth. Int. Endod. J. 2011, 44, 386–394. [Google Scholar] [CrossRef]
- Savychuk, A.; Manda, M.; Galanis, C.; Provatidis, C.; Koidis, P. Stress generation in mandibular anterior teeth restored with different types of post-and-core at various levels of ferrule. J. Prosthet. Dent. 2018, 119, 965–974. [Google Scholar] [CrossRef]
- Nokar, S.; Bahrami, M.; Mostafavi, A.S. Comparative Evaluation of the Effect of Different Post and Core Materials on Stress Distribution in Radicular Dentin by Three-Dimensional Finite Element Analysis. J. Dent. 2018, 15, 69–78. [Google Scholar]
- Arunpraditkul, S.; Saengsanon, S.; Pakviwat, W. Fracture Resistance of Endodontically Treated Teeth: Three Walls versus Four Walls of Remaining Coronal Tooth Structure. J. Prosthodont. 2008, 18, 49–53. [Google Scholar] [CrossRef]
- Dejak, B.; Młotkowski, A. The influence of ferrule effect and length of cast and FRC posts on the stresses in anterior teeth. Dent. Mater. 2013, 29, e227–e237. [Google Scholar] [CrossRef] [PubMed]
- Tekin, S.; Adiguzel, O.; Cangul, S.; Atas, O.; Erpacal, B. Evaluation of the use of PEEK material in post-core and crown restorations using finite element analysis. Am. J. Dent. 2020, 33, 251–257. [Google Scholar] [PubMed]
- Lee, K.-S.; Shin, J.-H.; Kim, J.-E.; Kim, J.-H.; Lee, W.-C.; Shin, S.-W.; Lee, J.-Y. Corrigendum to “Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis”. BioMed Res. Int. 2017, 2017, 1373127. [Google Scholar] [CrossRef]
- Nahar, R.; Mishra, S.K.; Chowdhary, R. Evaluation of stress distribution in an endodontically treated tooth restored with four different post systems and two different crowns—A finite element analysis. J. Oral Biol. Craniofacial Res. 2020, 10, 719–726. [Google Scholar] [CrossRef]
- Ibrahim, R.O.; Al-Zahawi, A.R.; Sabri, L.A. Mechanical and thermal stress evaluation of PEEK prefabricated post with different head design in endodontically treated tooth: 3D-finite element analysis. Dent. Mater. J. 2021, 40, 508–518. [Google Scholar] [CrossRef]
- Özarslan, M.; Büyükkaplan, U.; Özarslan, M.M.; Türker, N.; Çelik, H.K. Finite Element Stress Analysis of PEEK, Glass Fiber and Zirconia Post-Core Sys-tems in Maxillary Central Incisor. Van Sağlık Bilim. Derg. 2021, 14, 180–190. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|
Bone | 13.7 | 0.3 |
PDL | 0.0689 | 0.45 |
Root | 18.6 | 0.31 |
Post Cement | 18.3 | 0.3 |
Post (PEEK) | 3.95 | 0.3931 |
Post (High Noble Alloy) | 100 | 0.31 |
Gutta-Percha | 6.9 × 10−4 | 0.45 |
Crown Cement | 18.3 | 0.3 |
Crown (Zirconia) | 250 | 0.32 |
Component | Element Size (mm) | No. of Elements | Node |
---|---|---|---|
No. Nodes | |||
Crown | 0.5 | 45,246 | 68,222 |
Bone | 0.5 | 116,642 | 170,358 |
Crown Cement | 0.4 | 11,728 | 22,881 |
Post | 0.5 | 19,982 | 31,060 |
Gutta-Percha | 0.2 | 5607 | 8820 |
Post Cement | 0.4 | 11,513 | 22,967 |
Root | 0.5 | 54,607 | 80,895 |
Total | 265,325 | 405,203 |
Stresses | |||||
---|---|---|---|---|---|
Component | Material | Strength (MPa) | Von Mises (MPa) | Principal Stress (MPa) | FOS |
Root | Dentin | 86 | 31.77 | 43.82 | 1.96 |
Post | PEEK | 192 | 19.08 | 0.6456 | 10.01 |
Crown | Zirconia | 1100 | 79.47 | 50.53 | 13.84 |
Bone | 199.4 | 225.2 | |||
Displacement (um) | 4.925 | ||||
Root | Dentin | 86 | 29.98 | 42.63 | 2.02 |
Post | High Alloy | 310 | 18.35 | 13.41 | 16.89 |
Crown | Zirconia | 1100 | 66.18 | 42.01 | 16.62 |
Bone | 190.9 | 216.5 | |||
Displacement (um) | 4.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhallagi, T.S.; Moria, G.A.; Al Khunaizi, D.F.; Alzahrani, M.; Marghalani, T.Y. Stress Distribution in Radicular Dentin with Different Post and Core Materials: A 3D Finite Element Analysis. Appl. Sci. 2025, 15, 3515. https://doi.org/10.3390/app15073515
Alkhallagi TS, Moria GA, Al Khunaizi DF, Alzahrani M, Marghalani TY. Stress Distribution in Radicular Dentin with Different Post and Core Materials: A 3D Finite Element Analysis. Applied Sciences. 2025; 15(7):3515. https://doi.org/10.3390/app15073515
Chicago/Turabian StyleAlkhallagi, Turki S., Ghaida’a A. Moria, Dalya F. Al Khunaizi, Mahmoud Alzahrani, and Thamer Y. Marghalani. 2025. "Stress Distribution in Radicular Dentin with Different Post and Core Materials: A 3D Finite Element Analysis" Applied Sciences 15, no. 7: 3515. https://doi.org/10.3390/app15073515
APA StyleAlkhallagi, T. S., Moria, G. A., Al Khunaizi, D. F., Alzahrani, M., & Marghalani, T. Y. (2025). Stress Distribution in Radicular Dentin with Different Post and Core Materials: A 3D Finite Element Analysis. Applied Sciences, 15(7), 3515. https://doi.org/10.3390/app15073515