The Influence of a Competitive Football Match on the Knee Flexion and Extension Rate of Force Development and Isometric Muscle Strength in Female Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.3.1. Knee Flexion and Extension Isometric Test
2.3.2. Physical Parameters During the Competitive Match
2.4. Statistical Analysis
3. Results
3.1. Match-Derived Physical Parameters
3.2. IPF and RFD
3.3. H:Q Ratios
3.4. Correlations Between Match-Derived Physical Parameters and Strength Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
IPF | Isometric peak force |
RFD | Rate of force development |
H:Q | Hamstring-to-quadriceps |
ANOVA | Analysis of variance |
References
- Tabben, M.; Eirale, C.; Singh, G.; Al-Kuwari, A.; Ekstrand, J.; Chalabi, H.; Bahr, R.; Chamari, K. Injury and Illness Epidemiology in Professional Asian Football: Lower General Incidence and Burden but Higher ACL and Hamstring Injury Burden Compared with Europe. Br. J. Sports Med. 2022, 56, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Hallén, A.; Tomás, R.; Ekstrand, J.; Bengtsson, H.; Van den Steen, E.; Hägglund, M.; Waldén, M. UEFA Women’s Elite Club Injury Study: A Prospective Study on 1527 Injuries over Four Consecutive Seasons 2018/2019 to 2021/2022 Reveals Thigh Muscle Injuries to Be Most Common and ACL Injuries Most Burdensome. Br. J. Sports Med. 2024, 58, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Meeuwisse, W.H.; Tyreman, H.; Hagel, B.; Emery, C. A Dynamic Model of Etiology in Sport Injury: The Recursive Nature of Risk and Causation. Clin. J. Sport Med. 2007, 17, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Hägglund, M.; Werner, J.; Ekstrand, J. The Epidemiology of Anterior Cruciate Ligament Injury in Football (Soccer): A Review of the Literature from a Gender-Related Perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s My Risk of Sustaining an ACL Injury While Playing Sports?” A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef]
- Lucarno, S.; Zago, M.; Buckthorpe, M.; Grassi, A.; Tosarelli, F.; Smith, R.; Della Villa, F. Systematic Video Analysis of Anterior Cruciate Ligament Injuries in Professional Female Soccer Players. Am. J. Sports Med. 2021, 49, 1794–1802. [Google Scholar] [CrossRef]
- Achenbach, L.; Bloch, H.; Klein, C.; Damm, T.; Obinger, M.; Rudert, M.; Krutsch, W.; Szymski, D. Four Distinct Patterns of Anterior Cruciate Ligament Injury in Women’s Professional Football (Soccer): A Systematic Video Analysis of 37 Match Injuries. Br. J. Sports Med. 2024, 58, 709–716. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic Video Analysis of ACL Injuries in Professional Male Football (Soccer): Injury Mechanisms, Situational Patterns and Biomechanics Study on 134 Consecutive Cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Hewett, T.E.; Ford, K.R.; Hoogenboom, B.J.; Myer, G.D.; Timothy Hewett, C.E. Understanding and Preventing ACL Injuries: Current Biomechanical and Epidemiologic Considerations—Update 2010. N. Am. J. Sports Phys. Ther. 2010, 5, 234. [Google Scholar]
- Dai, B.; Mao, D.; Garrett, W.E.; Yu, B. Anterior Cruciate Ligament Injuries in Soccer: Loading Mechanisms, Risk Factors, and Prevention Programs. J. Sport Health Sci. 2014, 3, 299–306. [Google Scholar] [CrossRef]
- Bisciotti, G.; Chamari, K.; Cena, E.; Bisciotti, A.; Bisciotti, A.; Corsini, A.; Volpi, P. Anterior Cruciate Ligament Injury Risk Factors in Football. A Narrative Review. J. Sports Med. Phys. Fit. 2019, 59, 1724–1738. [Google Scholar] [CrossRef]
- Mancino, F.; Kayani, B.; Gabr, A.; Fontalis, A.; Plastow, R.; Haddad, F.S. Anterior Cruciate Ligament Injuries in Female Athletes: Risk Factors and Strategies for Prevention. Bone Jt. Open 2024, 5, 94. [Google Scholar] [CrossRef] [PubMed]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef]
- Heinert, B.L.; Collins, T.; Tehan, C.; Ragan, R.; Kernozek, T.W. Effect of Hamstring-to-Quadriceps Ratio on Knee Forces in Females During Landing. Int. J. Sports Med. 2021, 42, 264–269. [Google Scholar] [CrossRef]
- Rivera-Brown, A.M.; Frontera, W.R.; Fontánez, R.; Micheo, W.F. Evidence for Isokinetic and Functional Testing in Return to Sport Decisions Following ACL Surgery. PM&R 2022, 14, 678–690. [Google Scholar] [CrossRef]
- Alizadeh, S.; Sarvestan, J.; Svoboda, Z.; Alaei, F.; Linduška, P.; Ataabadi, P.A. Hamstring and ACL Injuries Impacts on Hamstring-to-Quadriceps Ratio of the Elite Soccer Players: A Retrospective Study. Phys. Ther. Sport 2022, 53, 97–104. [Google Scholar] [CrossRef]
- Kellis, E.; Sahinis, C.; Baltzopoulos, V. Is Hamstrings-to-Quadriceps Torque Ratio Useful for Predicting Anterior Cruciate Ligament and Hamstring Injuries? A Systematic and Critical Review. J. Sport Health Sci. 2022, 12, 343–358. [Google Scholar] [CrossRef]
- Ruas, C.V.; Pinto, R.S.; Haff, G.G.; Lima, C.D.; Pinto, M.D.; Brown, L.E. Alternative Methods of Determining Hamstrings-to-Quadriceps Ratios: A Comprehensive Review. Sports Med. Open 2019, 5, 11. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Effect of Fatigue Protocols on Lower Limb Neuromuscular Function and Implications for Anterior Cruciate Ligament Injury Prevention Training: A Systematic Review. Am. J. Sports Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Raastad, T.; Nilsson, J.; Paulsen, G.; Garthe, I.; Kadi, F. Neuromuscular Fatigue and Recovery in Elite Female Soccer: Effects of Active Recovery. Med. Sci. Sports Exerc. 2008, 40, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Morel, B.; Trama, R.; Hautier, C. Influence of Fatigue on the Rapid Hamstring/Quadriceps Force Capacity in Soccer Players. Front. Physiol. 2021, 12, 627674. [Google Scholar] [CrossRef]
- Krustrup, P.; Ortenblad, N.; Nielsen, J.; Nybo, L.; Gunnarsson, T.P.; Marcello Iaia, F.; Madsen, K.; Stephens, F.; Greenhaff, P.; Bangsbo, J. Maximal Voluntary Contraction Force, SR Function and Glycogen Resynthesis during the First 72 h after a High-Level Competitive Soccer Game. Eur. J. Appl. Physiol. 2011, 111, 2987–2995. [Google Scholar] [CrossRef]
- Rampinini, E.; Bosio, A.; Ferraresi, I.; Petruolo, A.; Morelli, A.; Sassi, A. Match-Related Fatigue in Soccer Players. Med. Sci. Sports Exerc. 2011, 43, 2161–2170. [Google Scholar] [CrossRef]
- Greco, C.C.; Da Silva, W.L.; Camarda, S.R.A.; Denadai, B.S. Fatigue and Rapid Hamstring/Quadriceps Force Capacity in Professional Soccer Players. Clin. Physiol. Funct. Imaging 2013, 33, 18–23. [Google Scholar] [CrossRef]
- Brownstein, C.G.; Dent, J.P.; Parker, P.; Hicks, K.M.; Howatson, G.; Goodall, S.; Thomas, K. Etiology and Recovery of Neuromuscular Fatigue Following Competitive Soccer Match-Play. Front. Physiol. 2017, 8, 831. [Google Scholar] [CrossRef]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.; Faul, O.; Hägglund, M. Three Distinct Mechanisms Predominate in Non-Contact Anterior Cruciate Ligament Injuries in Male Professional Football Players: A Systematic Video Analysis of 39 Cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef]
- Grassi, A.; Smiley, S.P.; Roberti di Sarsina, T.; Signorelli, C.; Marcheggiani Muccioli, G.M.; Bondi, A.; Romagnoli, M.; Agostini, A.; Zaffagnini, S. Mechanisms and Situations of Anterior Cruciate Ligament Injuries in Professional Male Soccer Players: A YouTube-Based Video Analysis. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 967–981. [Google Scholar] [CrossRef]
- Delextrat, A.; Baker, J.; Cohen, D.D.; Clarke, N.D. Effect of a Simulated Soccer Match on the Functional Hamstrings-to-Quadriceps Ratio in Amateur Female Players. Scand. J. Med. Sci. Sports 2013, 23, 478–486. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Barber Foss, K.D.; Liu, C.; Nick, T.G.; Hewett, T.E. The Relationship of Hamstrings and Quadriceps Strength to Anterior Cruciate Ligament Injury in Female Athletes. Clin. J. Sport Med. 2009, 19, 3–8. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to Determine Leg Dominance: The Agreement between Self-Reported and Observed Performance in Healthy Adults. PLoS ONE 2017, 12, e018987. [Google Scholar] [CrossRef] [PubMed]
- Sadigursky, D.; Braid, J.A.; De Lira, D.N.L.; Machado, B.A.B.; Carneiro, R.J.F.; Colavolpe, P.O. The FIFA 11+ Injury Prevention Program for Soccer Players: A Systematic Review. BMC Sports Sci. Med. Rehabil. 2017, 9, 18. [Google Scholar] [CrossRef]
- Oranchuk, D.; Switaj, Z.; Zuleger, B. The Addition of a “Rapid Response” Neuromuscular Activation to a Standard Dynamic Warm-up Improves Isometric Force and Rate of Force Development. J. Aust. Strength Cond. 2017, 25, 19–24. [Google Scholar]
- Moreno-Pérez, V.; Soler, A.; Ansa, A.; López-Samanes, Á.; Madruga-Parera, M.; Beato, M.; Romero-Rodríguez, D. Acute and Chronic Effects of Competition on Ankle Dorsiflexion ROM in Professional Football Players. Eur. J. Sport Sci. 2020, 20, 51–60. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Miralles-Iborra, A.; Moreno-Pérez, V.; Del Coso, J.; Courel-Ibáñez, J.; Elvira, J.L.L. Reliability of a Field-Based Test for Hamstrings and Quadriceps Strength Assessment in Football Players. Appl. Sci. 2023, 13, 4918. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Hernández-Belmonte, A.; Cava-Martínez, A.; Pallarés, J.G. Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Appl. Sci. 2020, 10, 4499. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; González-Custodio, A.; Olcina, G.; Pino-Ortega, J. Using an Inertial Device (WIMU PRO) to Quantify Neuromuscular Load in Running: Reliability, Convergent Validity, and Influence of Type of Surface and Device Location. J. Strength Cond. Res. 2020, 34, 365–373. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Bastida-Castillo, A.; Gómez-Carmona, C.D.; Pino-Ortega, J. Validity and Reliability of an Inertial Device (WIMU PROTM) to Quantify Physical Activity Level through Steps Measurement. J. Sports Med. Phys. Fit. 2019, 59, 587–592. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [PubMed]
- Font, R.; Karcher, C.; Reche, X.; Carmona, G.; Tremps, V.; Irurtia, A. Monitoring External Load in Elite Male Handball Players Depending on Playing Positions. Biol. Sport 2021, 38, 475. [Google Scholar] [CrossRef] [PubMed]
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Mckinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar]
- Park, E.; Cho, M.; Ki, C.S. Correct Use of Repeated Measures Analysis of Variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Dellal, A.; Chamari, K.; Igonin, P.H.; Martin, C.; Hautier, C. The Influence of Short Sprint Performance, Acceleration, and Deceleration Mechanical Properties on Change of Direction Ability in Soccer Players—A Cross-Sectional Study. Front. Physiol. 2022, 13, 1027811. [Google Scholar] [CrossRef]
- Nutarelli, S.; Rocchi, J.E.; Salerno, M.; Sangiorgio, A.; Deabate, L.; Filardo, G. Higher Eccentric Hamstring Muscle Fatigue After Participation in a Soccer Match in Young Female Athletes. Sports Health 2024, 16, 903–912. [Google Scholar] [CrossRef]
- Ishida, A.; Bazyler, C.D.; Sayers, A.L.; Mizuguchi, S.; Gentles, J.A. Acute Effects of Match-Play on Neuromuscular and Subjective Recovery and Stress State in Division I Collegiate Female Soccer Players. J. Strength Cond. Res. 2021, 35, 976–982. [Google Scholar] [CrossRef]
- de Hoyo, M.; Cohen, D.D.; Sañudo, B.; Carrasco, L.; Álvarez-Mesa, A.; del Ojo, J.J.; Domínguez-Cobo, S.; Mañas, V.; Otero-Esquina, C. Influence of Football Match Time-Motion Parameters on Recovery Time Course of Muscle Damage and Jump Ability. J. Sports Sci. 2016, 34, 1363–1370. [Google Scholar] [CrossRef]
- Magalhães, J.; Rebelo, A.; Oliveira, E.; Silva, J.R.; Marques, F.; Ascensão, A. Impact of Loughborough Intermittent Shuttle Test versus Soccer Match on Physiological, Biochemical and Neuromuscular Parameters. Eur. J. Appl. Physiol. 2010, 108, 39–48. [Google Scholar] [CrossRef]
- Gibala, M.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Stauber, W.T.; Elorriaga, A. Changes in Human Skeletal Muscle Ultrastructure and Force Production after Acute Resistance Exercise. J. Appl. Physiol. 1995, 78, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, R.; Lopez, P.; Andersen, L.L.; Machado, C.L.F.; Pinto, M.D.; Cadore, E.L.; Pinto, R.S. Hamstring Rate of Torque Development Is More Affected than Maximal Voluntary Contraction after a Professional Soccer Match. Eur. J. Sport Sci. 2019, 19, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Léam, A.; Fouré, A.; Wong, D.P.; Hautier, C.A. Relationship Between Explosive Strength Capacity of the Knee Muscles and Deceleration Performance in Female Professional Soccer Players. Front. Physiol. 2021, 12, 1725. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, S.; Pizzari, T. Risk Factors for Quadriceps Muscle Strain Injuries in Sport: A Systematic Review. J. Orthop. Sports Phys. Ther. 2022, 52, 389–400. [Google Scholar] [CrossRef]
- Lephart, S.M.; Ferris, C.M.; Riemann, B.L.; Myers, J.B.; Fu, F.H. Gender Differences in Strength and Lower Extremity Kinematics during Landing. Clin. Orthop. Relat. Res. 2002, 401, 162–169. [Google Scholar] [CrossRef]
- Landry, S.C.; McKean, K.A.; Hubley-Kozey, C.L.; Stanish, W.D.; Deluzio, K.J. Neuromuscular and Lower Limb Biomechanical Differences Exist between Male and Female Elite Adolescent Soccer Players during an Unanticipated Side-Cut Maneuver. Am. J. Sports Med. 2007, 35, 1888–1900. [Google Scholar] [CrossRef]
- Ahmad, C.S.; Clark, A.M.; Heilmann, N.; Schoeb, J.S.; Gardner, T.R.; Levine, W.N. Effect of Gender and Maturity on Quadriceps-to-Hamstring Strength Ratio and Anterior Cruciate Ligament Laxity. Am. J. Sports Med. 2006, 34, 370–374. [Google Scholar] [CrossRef]
- Martín-San Agustín, R.; Medina-Mirapeix, F.; Esteban-Catalán, A.; Escriche-Escuder, A.; Sánchez-Barbadora, M.; Benítez-Martínez, J.C. Epidemiology of Injuries in First Division Spanish Women’s Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 3009. [Google Scholar] [CrossRef]
- Kellis, E.; Blazevich, A.J. Hamstrings Force-Length Relationships and Their Implications for Angle-Specific Joint Torques: A Narrative Review. BMC Sports Sci. Med. Rehabil. 2022, 14, 166. [Google Scholar] [CrossRef]
Time Points | Measurements and Parameters (Units) | Tools |
---|---|---|
Baseline Post-match 48 h post-match | Strength measurements:
| Load cell |
Match-derived parameters
| GPS–accelerometer device and heart-rate band |
Variable | Muscle | Leg | Baseline | Post-Match | 48 h Post-Match | ANOVA | Baseline— Post-Match | Baseline—48 h Post-Match | Post-Match—48 h Post-Match |
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F; p; ηP2 | p, ES | p, ES | p, ES | |||
IPF (N) | Q | D | 237.40 ± 57.96 | 212.66 ± 48.66 | 229.76 ± 55.76 | 3.83; 0.047; 0.13 | 0.008, −0.46 | 0.530, −0.13 | 0.132, 0.33 |
ND | 230.95 ± 49.47 | 201.18 ± 48.75 | 234.50 ± 55.00 | 8.68; 0.001; 0.29 | 0.001, −0.61 | 0.724, 0.07 | 0.001, 0.64 | ||
H | D | 245.84 ± 61.81 | 227.69 ± 50.30 | 258.83 ± 66.31 | 5.57; 0.007; 0.21 | 0.041, −0.32 | 0.175, 0.20 | 0.007, 0.53 | |
ND | 236.99 ± 40.27 | 212.68 ± 47.49 | 243.42 ± 53.74 | 4.75; 0.014; 0.18 | 0.027, −0.55 | 0.538, 0.14 | 0.011, 0.61 | ||
RFDmax (N/s) | Q | D | 1415.19 ± 719.98 | 1600.05 ± 989.50 | 1352.85 ± 722.01 | 0.29; 0.749; 0.01 | - | - | - |
ND | 1326.15 ± 831.81 | 1306.63 ± 622.75 | 1434.71 ± 728.23 | 0.94; 0.400; 0.04 | - | - | - | ||
H | D | 905.24 ± 293.28 | 977.89 ± 340.81 | 1224.84 ± 483.46 | 5.28; 0.009; 0.20 | 0.338, 0.23 | 0.008, 0.80 | 0.053, 0.59 | |
ND | 1101.66 ± 447.53 | 945.23 ± 393.92 | 1241.41 ± 515.23 | 5.00; 0.011; 0.19 | 0.106, −0.37 | 0.163, −0.29 | 0.004, 0.65 | ||
RFD150 (N/s) | Q | D | 508.19 ± 109.14 | 424.35 ± 134.86 | 462.64 ± 132.29 | 4.13; 0.023; 0.16 | 0.003, −0.68 | 0.117, −0.38 | 0.279, 0.29 |
ND | 485.99 ± 93.41 | 414.24 ± 112.84 | 469.32 ± 159.08 | 3.01; 0.049; 0.13 | 0.023, −0.69 | 0.657, −0.13 | 0.065, 0.40 | ||
H | D | 479.12 ± 111.43 | 464.85 ± 116.13 | 521.74 ± 159.10 | 3.19; 0.044; 0.13 | 0.462, −0.13 | 0.089, −0.31 | 0.046, 0.41 | |
ND | 497.34 ± 87.50 | 425.08 ± 109.71 | 516.32 ± 97.87 | 8.72; 0.001; 0.29 | 0.006, −0.73 | 0.410, 0.20 | 0.001, 0.88 | ||
RFD250 (N/s) | Q | D | 291.95 ± 88.13 | 224.12 ± 111.93 | 275.59 ± 94.33 | 5.95; 0.005; 0.22 | 0.001, −0.67 | 0.425, −0.18 | 0.034, 0.50 |
ND | 290.21 ± 81.76 | 225.08 ± 97.85 | 270.97 ± 115.29 | 4.22; 0.020; 0.18 | 0.004, −0.72 | 0.442, −0.19 | 0.070, 0.43 | ||
H | D | 319.75 ± 81.52 | 300.95 ± 89.22 | 332.93 ± 123.64 | 1.68; 0.199; 0.07 | - | - | - | |
ND | 307.57 ± 57.54 | 271.03 ± 73.41 | 315.01 ± 94.19 | 3.51; 0.040; 0.14 | 0.040, −0.55 | 0.651, −0.10 | 0.046, 0.52 |
Variable | Leg | Baseline | Post-Match | 48 h Post-Match | ANOVA | Baseline— Post-Match | Baseline—48 h Post-Match | Post-Match—48 h Post-Match |
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F; p; ηP2 | p, ES | p, ES | p, ES | ||
H:Q IPF | D | 1.06 ± 0.28 | 1.09 ± 0.21 | 1.14 ± 0.29 | 1.86; 0.169; 0.09 | - | - | - |
ND | 1.03 ± 0.20 | 1.10 ± 0.27 | 1.05 ± 0.23 | 1.38; 0.263; 0.07 | - | - | - | |
H:Q RFDmax | D | 0.77 ± 0.39 | 0.95 ± 1.04 | 1.34 ± 1.30 | 1.93; 0.159; 0.09 | - | - | - |
ND | 1.08 ± 0.63 | 0.84 ± 0.44 | 1.26 ±1.41 | 1.95; 0.156; 0.09 | - | - | - | |
H:Q RFD150 | D | 0.97 ± 0.24 | 1.24 ± 0.54 | 1.16 ± 0.35 | 3.04; 0.040; 0.14 | 0.012, 0.65 | 0.014, 0.62 | 0.554, −0.18 |
ND | 1.03 ± 0.22 | 1.09 ± 0.33 | 1.26 ± 0.50 | 2.89; 0.050; 0.13 | 0.469, 0.20 | 0.081, 0.51 | 0.113, 0.33 | |
H:Q RFD250 | D | 1.19 ± 0.55 | 1.92 ± 1.57 | 1.30 ± 0.64 | 4.69; 0.015; 0.19 | 0.024, 0.62 | 0.255, 0.18 | 0.062, −0.51 |
ND | 1.12 ± 0.47 | 1.59 ± 1.35 | 1.82 ± 2.32 | 1.76; 0.185;0.08 | - | - | - |
Non-Dominant | Dominant | |||||
---|---|---|---|---|---|---|
IPF (N) | RFD150 (N/s) | RFD250 (N/s) | IPF (N) | RFD150 (N/s) | RFD250 (N/s) | |
Distance covered (m) | −0.2 | −0.42 | −0.29 | 0.42 | 0.28 | 0.18 |
Explosive distance over 1.12 m/s2(m) | 0.08 | −0.31 | −0.06 | 0.44 * | 0.33 | 0.16 |
Distance covered at 18–21 km/h (m) | −0.04 | −0.3 | 0.07 | 0.33 | 0.19 | 0.15 |
Distance covered at 21–24 km/h (m) | −0.01 | −0.14 | 0.1 | 0.18 | 0.11 | −0.02 |
Distance covered at >24 km/h (m) | −0.18 | −0.16 | 0.04 | 0.1 | 0.01 | −0.07 |
Total number of accelerations (n) | 0.15 | 0.2 | −0.11 | 0.25 | 0.19 | 0.32 |
Total number of decelerations (n) | 0.15 | 0.2 | −0.12 | 0.25 | 0.19 | 0.32 |
Distance covered with acceleration over 3 m/s2 (m) | 0.22 | −0.15 | 0.09 | 0.44 * | 0.49 * | 0.29 |
Distance covered with decelerations under −3 m/s2 (m) | 0.24 | −0.12 | 0.13 | 0.39 | 0.28 | 0.24 |
Mean heart rate (bpm) | −0.09 | −0.03 | −0.09 | 0.08 | −0.05 | 0.37 |
Non-Dominant | Dominant | |||||
---|---|---|---|---|---|---|
IPF (N) | RFD150 (N/s) | RFD250 (N/s) | IPF (N) | RFD150 (N/s) | RFD250 (N/s) | |
Distance covered (m) | 0.15 | 0.04 | 0.10 | 0.36 | 0.23 | −0.02 |
Explosive distance over 1.12 m/s2(m) | 0.17 | 0.05 | 0.10 | 0.42 | 0.15 | −0.01 |
Distance covered at 18–21 km/h (m) | 0.01 | −0.04 | 0.01 | 0.35 | 0.13 | 0.03 |
Distance covered at 21–24 km/h (m) | 0.09 | 0.19 | 0.15 | 0.36 | 0.23 | 0.14 |
Distance covered at 24–50 km/h (m) | 0.03 | 0.18 | 0.14 | 0.24 | 0.18 | 0.03 |
Total number of accelerations (n) | 0.51 * | 0.46 * | 0.53 * | 0.38 | 0.26 | 0.47 * |
Total number of decelerations (n) | 0.51 * | 0.46 * | 0.53 * | 0.38 | 0.26 | 0.46 * |
Distance covered with acceleration over 3 m/s2 (m) | 0.26 | −0.05 | 0.15 | 0.49 * | 0.09 | 0.03 |
Distance covered with decelerations under −3 m/s2 (m) | 0.18 | 0.06 | 0.16 | 0.42 | 0.22 | 0.11 |
Mean heart rate (bpm) | 0.04 | −0.09 | 0.01 | 0.13 | 0.42 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miralles-Iborra, A.; Elvira, J.L.L.; Del Coso, J.; Hernández-Sánchez, S.; Lozano-Quijada, C.; Moreno-Pérez, V. The Influence of a Competitive Football Match on the Knee Flexion and Extension Rate of Force Development and Isometric Muscle Strength in Female Football Players. Appl. Sci. 2025, 15, 3326. https://doi.org/10.3390/app15063326
Miralles-Iborra A, Elvira JLL, Del Coso J, Hernández-Sánchez S, Lozano-Quijada C, Moreno-Pérez V. The Influence of a Competitive Football Match on the Knee Flexion and Extension Rate of Force Development and Isometric Muscle Strength in Female Football Players. Applied Sciences. 2025; 15(6):3326. https://doi.org/10.3390/app15063326
Chicago/Turabian StyleMiralles-Iborra, Aaron, Jose L. L. Elvira, Juan Del Coso, Sergio Hernández-Sánchez, Carlos Lozano-Quijada, and Víctor Moreno-Pérez. 2025. "The Influence of a Competitive Football Match on the Knee Flexion and Extension Rate of Force Development and Isometric Muscle Strength in Female Football Players" Applied Sciences 15, no. 6: 3326. https://doi.org/10.3390/app15063326
APA StyleMiralles-Iborra, A., Elvira, J. L. L., Del Coso, J., Hernández-Sánchez, S., Lozano-Quijada, C., & Moreno-Pérez, V. (2025). The Influence of a Competitive Football Match on the Knee Flexion and Extension Rate of Force Development and Isometric Muscle Strength in Female Football Players. Applied Sciences, 15(6), 3326. https://doi.org/10.3390/app15063326