Multi-Object Recognition and Motion Detection Based on Flexible Pressure Sensor Array and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabrication of Flexible Pressure Sensor Materials
2.2. Performance Characterization
2.3. Data Acquisition
3. Results and Discussion
3.1. Signal Acquisition of Object Shape
3.2. Signal Recognition Based on Deep Learning
3.3. Throwing a Ball
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, T.; Feng, B.; Huo, J.; Xiao, Y.; Wang, W.; Peng, J.; Li, Z.; Du, C.; Wang, W.; Zou, G.; et al. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Lett. 2023, 16, 14. [Google Scholar] [CrossRef]
- Wei, D.; Guo, J.; Qiu, Y.; Liu, S.; Mao, J.; Liu, Y.; Chen, Z.; Wu, H.; Yin, Z. Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 2022, 9, nwac227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, P.; Sun, Y.; Li, P.; Mao, Y. Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices. Bio-Design Manuf. 2024, 7, 566–590. [Google Scholar] [CrossRef]
- Shatwell, D.G.; Murray, V.; Barton, A. Real-time ore sorting using color and texture analysis. Int. J. Min. Sci. Technol. 2023, 33, 659–674. [Google Scholar] [CrossRef]
- Jiang, L.; Lu, M.; Yang, P.; Fan, Y.; Huang, H.; Xiong, J.; Wang, Z.; Gu, H.; Wang, J. Self-powered sensitive pressure sensor matrix based on patterned arrays of flexible (K,Na)NbO3 piezoelectric nanorods. Sci. China Mater. 2023, 66, 1494–1503. [Google Scholar] [CrossRef]
- Shih, B.; Shah, D.; Li, J.; Thuruthel, T.G.; Park, Y.-L.; Iida, F.; Bao, Z.; Kramer-Bottiglio, R.; Tolley, M.T. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239. [Google Scholar] [CrossRef]
- Kellmeyer, P.; Mueller, O.; Feingold-Polak, R.; Levy-Tzedek, S. Social robots in rehabilitation: A question of trust. Sci. Robot. 2018, 3, eaat1587. [Google Scholar] [CrossRef]
- Sun, H.; Kuchenbecker, K.J.; Martius, G. A soft thumb-sized vision-based sensor with accurate all-round force perception. Nat. Mach. Intell. 2022, 4, 135–145. [Google Scholar] [CrossRef]
- Ren, X.; He, J.; Han, T.; Liu, S.; Lv, M.; Zhou, R. Exploring the effect of fingertip aero-haptic feedforward cues in directing eyes-free target acquisition in VR. Virtual Real. Intell. Hardw. 2024, 6, 113–131. [Google Scholar] [CrossRef]
- Wang, C.; Pan, C.; Wang, Z. Electronic Skin for Closed-Loop Systems. ACS Nano 2019, 13, 12287–12293. [Google Scholar] [CrossRef]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef]
- Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nat. Mater. 2016, 15, 921–925. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, Z.; He, T.; Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021, 12, 5378. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Sun, Z.; Lee, C. Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities. ACS Nano 2022, 16, 14097–14110. [Google Scholar] [CrossRef]
- Schostek, S.; Ho, C.; Kalanovic, D.; Schurr, M.O. Artificial tactile sensing in minimally invasive surgery—A new technical approach. Minim. Invasive Ther. Allied Technol. 2006, 15, 296–304. [Google Scholar] [CrossRef]
- Wang, R.; Hu, S.; Zhu, W.; Huang, Y.; Wang, W.; Li, Y.; Yang, Y.; Yu, J.; Deng, Y. Recent progress in high-resolution tactile sensor array: From sensor fabrication to advanced applications. Prog. Nat. Sci. 2023, 33, 55–66. [Google Scholar] [CrossRef]
- Li, J.; Bao, R.; Tao, J.; Dong, M.; Zhang, Y.; Fu, S.; Peng, D.; Pan, C. Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. Appl. Phys. Rev. 2020, 7, 011404. [Google Scholar] [CrossRef]
- He, J.; Xiao, P.; Lu, W.; Shi, J.; Zhang, L.; Liang, Y.; Pan, C.; Kuo, S.-W.; Chen, T. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 2019, 59, 422–433. [Google Scholar] [CrossRef]
- Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z.L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon- 2013, 7, 752–758. [Google Scholar] [CrossRef]
- Peng, Y.; Que, M.; Lee, H.E.; Bao, R.; Wang, X.; Lu, J.; Yuan, Z.; Li, X.; Tao, J.; Sun, J.; et al. Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy 2019, 58, 633–640. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, X.; Huo, Z.; Li, X.; Que, M.; Peng, Z.; Wang, H.; Pan, C. A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Adv. Mater. 2018, 30, 1706738. [Google Scholar] [CrossRef]
- Jang, K.-I.; Chung, H.U.; Xu, S.; Lee, C.H.; Luan, H.; Jeong, J.; Cheng, H.; Kim, G.-T.; Han, S.Y.; Lee, J.W.; et al. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 2015, 6, 6566. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; McCay, R.N.; Goswami, S.; Xu, Y.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-Permeable, Multifunctional On-Skin Electronics Based on Laser-Induced Porous Graphene and Sugar-Templated Elastomer Sponges. Adv. Mater. 2018, 30, 1804327. [Google Scholar] [CrossRef]
- Mu, C.; Wang, Y.; Mei, D.; Wang, S. Development of robotic hand tactile sensing system for distributed contact force sensing in robotic dexterous multimodal grasping. Int. J. Intell. Robot. Appl. 2022, 6, 760–772. [Google Scholar] [CrossRef]
- Tanner, N.A.; Niemeyer, G. Improving Perception in Time-delayed Telerobotics. Int. J. Robot. Res. 2005, 24, 631–644. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wu, S.; Wu, X.; Shu, J. Laser-Scribed Graphene for Human Health Monitoring: From Biophysical Sensing to Biochemical Sensing. Nanomaterials 2024, 14, 942. [Google Scholar] [CrossRef]
- Azhari, S.; Yousefi, A.T.; Tanaka, H.; Khajeh, A.; Kuredemus, N.; Bigdeli, M.M.; Hamidon, M.N. Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: Toward development of haptic sensors. Sens. Actuators A Phys. 2017, 266, 158–165. [Google Scholar] [CrossRef]
- Wang, S.; Bi, Y.; Shi, J.; Wu, Q.; Zhang, C.; Huang, S.; Gao, W.; Bi, M. Deep learning-based hydrogen leakage localization prediction considering sensor layout optimization in hydrogen refueling stations. Process. Saf. Environ. Prot. 2024, 189, 549–560. [Google Scholar] [CrossRef]
- Dar, F.; Emenike, H.; Yin, Z.; Liyanage, M.; Sharma, R.; Zuniga, A.; Hoque, M.A.; Radeta, M.; Nurmi, P.; Flores, H. The MIDAS touch: Thermal dissipation resulting from everyday interactions as a sensing modality. Pervasive Mob. Comput. 2022, 84, 101625. [Google Scholar] [CrossRef]
- Wei, C.; Lin, W.; Liang, S.; Chen, M.; Zheng, Y.; Liao, X.; Chen, Z. An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements. Nano-Micro Lett. 2022, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Nicolelis, M.A.L. Brain–machine–brain interfaces as the foundation for the next generation of neuroprostheses. Natl. Sci. Rev. 2021, 9, nwab206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Ali, M.U.; Zou, C.; Xie, W.; Li, S.; Meng, H. Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication. Front. Phys. 2020, 16, 13302. [Google Scholar] [CrossRef]
- Pyun, K.R.; Kwon, K.; Yoo, M.J.; Kim, K.K.; Gong, D.; Yeo, W.-H.; Han, S.; Ko, S.H. Machine-learned wearable sensors for real-time hand-motion recognition: Toward practical applications. Natl. Sci. Rev. 2024, 11, nwad298. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Sun, F.; Yang, W.; Furber, S.; Sun, T. Embodied tactile perception and learning. Brain Sci. Adv. 2020, 6, 132–158. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, T. Quality-of-Experience in Human-in-the-Loop Haptic Communications. ZTE Commun. 2019, 17, 48–55. [Google Scholar]
- Sakai, M.; Watanabe, K.; Ishimine, H.; Okada, Y.; Yamauchi, H.; Sadamitsu, Y.; Kudo, K. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces. Nanoscale Res. Lett. 2017, 12, 349. [Google Scholar] [CrossRef]
- Wiederer, C.; Fröhlich, M.; Strohmayr, M. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions. Curr. Dir. Biomed. Eng. 2015, 1, 135–139. [Google Scholar] [CrossRef]
- Wu, H.Y.; Fan, K. Online Direction Classification and Recognition Using an Intuitive Tactile Communication. Appl. Mech. Mater. 2014, 543–547, 1542–1545. [Google Scholar] [CrossRef]
- Schmidtler, J.; Bengler, K. Fast or Accurate?—Performance Measurements for Physical Human-robot Collaborations. Procedia Manuf. 2015, 3, 1387–1394. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Z.; Zhao, Y.; Ling, H.; Sun, L.; Lee, C.; Zhu, M.; Chen, T. Tactile Sensing and Rendering Patch with Dynamic and Static Sensing and Haptic Feedback for Immersive Communication. ACS Appl. Mater. Interfaces 2024, 16, 53207–53219. [Google Scholar] [CrossRef] [PubMed]
- Fennel, M.; Zea, A.; Hanebeck, U.D. Intuitive and immersive teleoperation of robot manipulators for remote decontamination: Intuitive und immersive Teleoperation von Robotermanipulatoren für die Dekontamination aus der Ferne. At-Autom. 2022, 70, 888–899. [Google Scholar] [CrossRef]
- Hale, K.S.; Stanney, K.M.; Malone, L. Enhancing virtual environment spatial awareness training and transfer through tactile and vestibular cues. Ergonomics 2009, 52, 187–203. [Google Scholar] [CrossRef]
- Chen, J.Y.; Terrence, P.I. Effects of tactile cueing on concurrent performance of military and robotics tasks in a simulated multitasking environment. Ergonomics 2008, 51, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.G.; Benz, T.M.; Mertens, A.; Brandl, C.; Nitsch, V. Do multimodal search cues help or hinder teleoperated search and rescue missions? Ergonomics 2023, 66, 1255–1269. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ding, Z.; Modares, H. Data-Driven Human-Robot Interaction Without Velocity Measurement Using Off-Policy Reinforcement Learning. IEEE/CAA J. Autom. Sin. 2022, 9, 47–63. [Google Scholar] [CrossRef]
- Zhou, Z. Wearable Haptic Feedback System and Interfaces. Highlights Sci. Eng. Technol. 2023, 45, 18–24. [Google Scholar] [CrossRef]
- Du, G.; Shao, Y.; Luo, B.; Liu, T.; Zhao, J.; Qin, Y.; Wang, J.; Zhang, S.; Chi, M.; Gao, C.; et al. Compliant Iontronic Triboelectric Gels with Phase-Locked Structure Enabled by Competitive Hydrogen Bonding. Nano-Micro Lett. 2024, 16, 170. [Google Scholar] [CrossRef]
- SRoy, S.; Sinha, D.; Pal, R.K.; Roy, U. A unique approach towards keystroke dynamics-based entry-point user access control. Int. J. Biom. 2024, 16, 133–157. [Google Scholar]
- Lee, E.I.; Park, J.W. A self-powered, single-mode tactile sensor based on sensory adaptation using piezoelectric-driven ion migration. Adv. Mater. Technol. 2022, 7, 2200691. [Google Scholar] [CrossRef]
- O’Nascimento, R. “I am feeling blue… and red”: Exploring alternative ways of feeling colours through a wearable haptic artefact. Multimodality Soc. 2023, 3, 444–452. [Google Scholar] [CrossRef]
- Yoshida, S.; Xie, H.; Miyata, K. Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation. Sensors 2023, 23, 584. [Google Scholar] [CrossRef] [PubMed]
- Vaquero-Melchor, D.; Bernardos, A.M. Enhancing Interaction with Augmented Reality through Mid-Air Haptic Feedback: Architecture Design and User Feedback. Appl. Sci. 2019, 9, 5123. [Google Scholar] [CrossRef]
- Zhang, P.; Gu, L.; Liu, W.; Ge, D.; Yang, L.; Guo, Y.; Shi, J. Underwater Highly Pressure-Sensitive Fabric Based on Electric-Induced Alignment of Graphene. Materials 2023, 16, 1567. [Google Scholar] [CrossRef]
- Bao, R.; Tao, J.; Zhao, J.; Dong, M.; Li, J.; Pan, C. Integrated intelligent tactile system for a humanoid robot. Sci. Bull. 2023, 68, 1027–1037. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile Sensing—From Humans to Humanoids. IEEE Trans. Robot. 2010, 26, 1–20. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Sun, F. Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods. IEEE Trans. Instrum. Meas. 2016, 65, 656–665. [Google Scholar] [CrossRef]
- Schmitz, A.; Maiolino, P.; Maggiali, M.; Natale, L.; Cannata, G.; Metta, G. Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors. IEEE Trans. Robot. 2011, 27, 389–400. [Google Scholar] [CrossRef]
- Wen, F.; Sun, Z.; He, T.; Shi, Q.; Zhu, M.; Zhang, Z.; Li, L.; Zhang, T.; Lee, C. Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications. Adv. Sci. 2020, 7, 2000261. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Z.; Wang, Z.; Cai, H.; Wang, J.; Li, K. Machine-learning-assisted wearable PVA/Acrylic fluorescent layer-based triboelectric sensor for motion, gait and individual recognition. Chem. Eng. J. 2023, 478, 147075. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.; Sun, F.; Guo, D. Recent Progress on Tactile Object Recognition. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417717056. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Tao, Y.; Shi, K.; Li, J.; Shi, J.; Xu, S.; Guo, Y. Multi-Object Recognition and Motion Detection Based on Flexible Pressure Sensor Array and Deep Learning. Appl. Sci. 2025, 15, 3302. https://doi.org/10.3390/app15063302
Zhang H, Tao Y, Shi K, Li J, Shi J, Xu S, Guo Y. Multi-Object Recognition and Motion Detection Based on Flexible Pressure Sensor Array and Deep Learning. Applied Sciences. 2025; 15(6):3302. https://doi.org/10.3390/app15063302
Chicago/Turabian StyleZhang, Hao, Yanan Tao, Kai Shi, Jiali Li, Jianjun Shi, Shaofeng Xu, and Ying Guo. 2025. "Multi-Object Recognition and Motion Detection Based on Flexible Pressure Sensor Array and Deep Learning" Applied Sciences 15, no. 6: 3302. https://doi.org/10.3390/app15063302
APA StyleZhang, H., Tao, Y., Shi, K., Li, J., Shi, J., Xu, S., & Guo, Y. (2025). Multi-Object Recognition and Motion Detection Based on Flexible Pressure Sensor Array and Deep Learning. Applied Sciences, 15(6), 3302. https://doi.org/10.3390/app15063302