Advanced AI and Machine Learning Techniques for Time Series Analysis and Pattern Recognition
Abstract
:1. Introduction
2. Machine Learning Techniques for Time Series Analysis
2.1. Recurrent Neural Networks (RNNs) and LSTMs
2.2. Transformer Models
2.3. Ensemble Methods
2.4. Unsupervised Learning Frameworks
3. Applications Across Domains
3.1. Data-Driven Finance
3.2. Astrophysics
3.3. Cloud Masking in Satellite Imagery
3.4. Healthcare Monitoring
4. Emerging Trends and Future Directions
4.1. Explainable AI for Time Series
4.2. Transfer Learning for Limited Data Scenarios
4.3. Federated Learning for Privacy-Preserving Analysis
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Fu, T.C.; Chung, F.L.; Luk, R.; Ng, C.M. Preventing meaningless stock time series pattern discovery by changing perceptually important point detection. In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Changsha, China, 27–29 August 2005; pp. 1171–1174. [Google Scholar]
- Markowska-Kaczmar, U.; Dziedzic, M. Discovery of technical analysis patterns. In Proceedings of the International Multiconference on Computer Science and Information Technology, Wisla, Poland, 20–22 October 2008; pp. 137–142. [Google Scholar]
- Chen, T.L.; Chen, F.Y. An intelligent pattern recognition model for supporting investment decisions in stock market. Inf. Sci. 2016, 346, 261–274. [Google Scholar] [CrossRef]
- Pagliaro, A. Forecasting Significant Stock Market Price Changes Using Machine Learning: Extra Trees Classifier Leads. Electronics 2023, 12, 4551. [Google Scholar] [CrossRef]
- Sahakyan, N. AI in the Cosmos. arXiv 2024, arXiv:2412.10093. [Google Scholar] [CrossRef]
- Olivares, E.; Curé, M.; Araya, I.; Fabregas, E.; Arcos, C.; Machuca, N.; Farias, G. Estimation of Physical Stellar Parameters from Spectral Models Using Deep Learning Techniques. Mathematics 2024, 12, 3169. [Google Scholar] [CrossRef]
- Special Issue: Newest Results in Gravitational Waves and Machine Learning. Universe 2024, 9, 10. Available online: https://www.mdpi.com/journal/universe/special_issues/48U1E55JLC (accessed on 12 March 2024).
- Pagliaro, A.; Cusumano, G.; La Barbera, A.; La Parola, V.; Lombardi, S. Application of Machine Learning Ensemble Methods to ASTRI Mini-Array Cherenkov Event Reconstruction. Appl. Sci. 2023, 13, 8172. [Google Scholar] [CrossRef]
- Bruno, A.; Pagliaro, A.; La Parola, V. Application of Machine and Deep Learning Methods to the Analysis of IACTs Data. In Intelligent Astrophysics; Zelinka, I., Brescia, M., Baron, D., Eds.; Emergence, Complexity and Computation; Springer: Berlin/Heidelberg, Germany, 2021; Volume 39, pp. 115–136. [Google Scholar]
- Anzalone, A.; Pagliaro, A.; Tutone, A. An Introduction to Machine and Deep Learning Methods for Cloud Masking Applications. Appl. Sci. 2024, 14, 2887. [Google Scholar]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.J. A Machine Learning-based Cloud Detection Algorithm for the Himawari-8 Spectral Image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Cilli, R.; Monaco, A.; Amoroso, N.; Tateo, A.; Tangaro, S.; Bellotti, R. Machine Learning for Cloud Detection of Globally Distributed Sentinel-2 Images. Remote Sens. 2020, 12, 2355. [Google Scholar] [CrossRef]
- Priyadharsan, D.M.J.; Sanjay, K.K.; Kathiresan, S.; Karthik, K.; Prasath, K.S. Patient Health Monitoring Using IoT with Machine Learning. Int. Conf. Intell. Syst. Inf. Manag. 2019, 6, 7514–7520. [Google Scholar]
- Awad, S.R.; Alghareb, F.S. Encoding-Based Machine Learning Approach for Health Status Classification and Remote Monitoring of Cardiac Patients. Algorithms 2025, 18, 94. [Google Scholar] [CrossRef]
- Agafonov, A. Traffic Flow Prediction Using Graph Convolutional Networks. In Proceedings of the 10th International Conference on Information Science and Technology (ICIST), Bath, London, and Plymouth, UK, 9–15 September 2020; pp. 91–95. [Google Scholar]
- Rasulmukhamedov, M.; Tashmetov, T.; Tashmetov, K. Forecasting Traffic Flow Using Machine Learning Algorithms. Eng. Proc. 2024, 70, 14. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Energy load time-series forecast using decomposition and autoencoder integrated memory network. Appl. Soft Comput. 2020, 93, 106390. [Google Scholar] [CrossRef]
- Lenton, T.M.; Xu, C.; Abrams, J.F.; Ghadiali, A.; Loriani, S.; Sakschewski, B.; Zimm, C.; Ebi, K.L.; Dunn, R.R.; Svenning, J.-C.; et al. Quantifying the human cost of global warming. Nat. Sustain. 2023, 6, 1237. [Google Scholar] [CrossRef]
- Vázquez-Ramírez, S.; Torres-Ruiz, M.; Quintero, R.; Chui, K.T.; Guzmán Sánchez-Mejorada, C. An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model. Mathematics 2023, 11, 3060. [Google Scholar] [CrossRef]
- Rajendran, T.; Imtiaz, N.M.; Jagadeesh, K.; Sampathkumar, B. Cybersecurity Threat Detection Using Deep Learning and Anomaly Detection Techniques. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Uzoka, A.; Cadet, E.; Ojukwu, P.U. Applying artificial intelligence in Cybersecurity to enhance threat detection, response, and risk management. Comput. Sci. Res. J. 2024, 5, 2511–2538. [Google Scholar]
- Xie, Y.; Li, Z.; Bao, H.; Jia, X.; Xu, D.; Zhou, X.; Skakun, S. Auto-CM: Unsupervised Deep Learning for Satellite Imagery Composition and Cloud Masking Using Spatio-Temporal Dynamics. Aaai Conf. Artif. Intell. 2023, 37, 14575–14583. [Google Scholar] [CrossRef]
- Krasner, S. Examining Applications of Fourier Transforms to Financial Data and Covariance Estimation, Carnegie Mellon University. 2020. Available online: https://kilthub.cmu.edu/articles/thesis/Examining_Applications_of_Fourier_Transforms_to_Financial_Data_and_Covariance_Estimation/12824255 (accessed on 12 March 2025).
- Krishna, G.V.; Avula, S.K.; Raju, V.V.K.; Lakshmi, T.V.H.; Tumuluru, P.; Balaji, T.; Jaya, N. Enhanced ECG Signal Classification Using Hybrid CNN-Transformer Models with Tuning Techniques and Genetic Algorithm Optimization. J. Theor. Appl. Inf. Technol. 2024, 102, 7510–7521. [Google Scholar]
- Yakymiv, V. Top Machine Learning Time Series Techniques: Pros and Cons. 2025. Available online: https://forbytes.com/blog/machine-learning-time-series-techniques/ (accessed on 12 March 2025).
- Logunova, I. Time Series Analysis in Machine Learning. 2025. Available online: https://serokell.io/blog/time-series-analysis-in-ml (accessed on 12 March 2025).
- Qian, Y. An enhanced Transformer framework with incremental learning for online stock price prediction. PLoS ONE 2025, 20, e0316955. [Google Scholar] [CrossRef]
- Alqahtani, A.; Alsubai, S.; Sha, M.; Vilcekova, L.; Javed, T. Cardiovascular Disease Detection Using Ensemble Learning. Comput. Intell. Neurosci. 2022, 2022, 5267498. [Google Scholar] [CrossRef]
- Mitra, A.; Wang, L. Improving Artificial Neural Network Based Stock Forecasting Using Fourier De-Noising. Future Transp. 2023, 70, 14. [Google Scholar]
- Ren, X.; Xu, W.; Duan, K. Fourier Transform-Based LSTM Stock Prediction Model Under Oil Shocks. Quant. Financ. Econ. 2022, 6, 342–358. [Google Scholar] [CrossRef]
- Ma, D.; Wu, R.; Xiao, D.; Sui, B. Cloud Removal from Satellite Images Using a Deep Learning Model with the Cloud-Matting Method. Remote Sens. 2023, 15, 904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliaro, A.; Compagnino, A.A.; Sangiorgi, P. Advanced AI and Machine Learning Techniques for Time Series Analysis and Pattern Recognition. Appl. Sci. 2025, 15, 3165. https://doi.org/10.3390/app15063165
Pagliaro A, Compagnino AA, Sangiorgi P. Advanced AI and Machine Learning Techniques for Time Series Analysis and Pattern Recognition. Applied Sciences. 2025; 15(6):3165. https://doi.org/10.3390/app15063165
Chicago/Turabian StylePagliaro, Antonio, Antonio Alessio Compagnino, and Pierluca Sangiorgi. 2025. "Advanced AI and Machine Learning Techniques for Time Series Analysis and Pattern Recognition" Applied Sciences 15, no. 6: 3165. https://doi.org/10.3390/app15063165
APA StylePagliaro, A., Compagnino, A. A., & Sangiorgi, P. (2025). Advanced AI and Machine Learning Techniques for Time Series Analysis and Pattern Recognition. Applied Sciences, 15(6), 3165. https://doi.org/10.3390/app15063165