Optimizing Joystick Button Layout for Males: An Incremental Approach Based on Gripping Operational Features
Abstract
:1. Introduction
- There are different operation areas for fingers when gripping.
- Finger operations in different areas have generalizable features and predictable trends.
2. Method and Material
2.1. Related Works
2.2. Establishment of Basic Grip State
- Button operation in the grip state should be limited to single-finger use.
- While engaging a single finger for operational tasks, the remaining fingers must stay relaxed and maintain contact with the joystick.
- The basic grip state requires the bases of the four fingers, excluding the thumb, to remain in contact with the joystick.
- The elbow and wrist should be at the same height.
- Elbow and shoulder joints should be relaxed to avoid assistance.
2.3. Operation Area Division
2.4. Grip Operation Experiment
2.4.1. Experimental Setup
2.4.2. Experimental Task
2.4.3. Participants
2.4.4. Procedure
3. Results
3.1. Main Operation Area
3.2. Index Finger Operation Area
3.3. Thumb Deflection Operation Area
4. Discussion
4.1. Features of MOA
4.2. Features of IFOA
4.3. Features of TDOA
4.4. Incremental Design Guidelines for Joystick
4.5. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, J.; Muraki, S. An Ergonomics Study of Thumb Movements on Smartphone Touch Screen. Ergonomics 2014, 57, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Han, S.H.; Park, J.; Cho, Y. Touch Key Design for Target Selection on a Mobile Phone. In Proceedings of the 10th International Conference on Human Computer Interaction With Mobile Devices and Services, Amsterdam, the Netherlands, 2–5 September 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 423–426. [Google Scholar]
- Campos, A.; Neto, C.F.; Cansian, M.; Reis, A.; Borges, N. Touchscreen Device Layout Based on Thumb Comfort and Precision. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; IEEE: Sao Paulo, Brazil, 2014; pp. 975–980. [Google Scholar]
- Qian, J.Y.; Xue, Q.; Huang, S.S. The Control Panel Configuration Design of Spiral Juice Machine Based on the Ergonomics. Packag. Eng. 2018, 3, 193–199. [Google Scholar] [CrossRef]
- Choi, G.; Kim, H.; Jeong, Y.; Son, M.; Beck, D. A Study on Ergonomic Layout of Automotive Electronic Shift Buttons. Appl. Sci. 2022, 12, 9222. [Google Scholar] [CrossRef]
- McLoone, H.E.; Jacobson, M.; Hegg, C.; Johnson, P.W. User-Centered Design and Evaluation of a next Generation Fixed-Split Ergonomic Keyboard. Work 2010, 37, 445–456. [Google Scholar] [CrossRef]
- Huysmans, M.A.; De Looze, M.P.; Hoozemans, M.J.M.; Van Der Beek, A.J.; Van Dieën, J.H. The Effect of Joystick Handle Size and Gain at Two Levels of Required Precision on Performance and Physical Load on Crane Operators. Ergonomics 2006, 49, 1021–1035. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Tatemoto, T.; Kumazawa, N.; Tanabe, S.; Nakagawa, Y.; Otaka, Y. The Effect of Differences in Powered Wheelchair Joystick Shape on Subjective and Objective Operability. Appl. Erg. 2023, 107, 103920. [Google Scholar] [CrossRef]
- Cooper, R.A.; Jones, D.K.; Fitzgerald, S.; Boninger, M.L.; Albright, S.J. Analysis of Position and Isometric Joysticks for Powered Wheelchair Driving. IEEE Trans. Biomed. Eng. 2000, 47, 902–910. [Google Scholar] [CrossRef]
- Bassoli, E.; Gatto, A.; Iuliano, L.; Marchiandi, G. Reverse Engineering Approach for a Joystick Handgrip Re-Styling with Ergonomic Features. In Proceedings of the 3D Modelling 2003, Paris, France, 23–24 April 2003. [Google Scholar]
- Bassoli, E.; Gatto, A.; Iuliano, L.; Leali, F. Design for Manufacturing of an Ergonomic Joystick Handgrip. In Proceedings of the World Automation Congress, Seville, Spain, 28 June–1 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 18, pp. 461–466. Available online: https://ieeexplore.ieee.org/abstract/document/1441084 (accessed on 20 June 2005).
- Lo, C.-H.; Ko, Y.-C. A Study of the Difference in Operating Performance Due to a Gaming Joystick’s Styling and Button Locations. In Proceedings of the 2017 International Conference on Organizational Innovation (ICOI 2017), Weihai, China, 18–20 July 2017; Atlantis Press: Dordrecht, The Netherlands, 2017; pp. 267–271. [Google Scholar]
- Alkemade, J. LapaJoy: A 3D-Printed Ergonomic Handle Design for a Steerable Laparoscopic Instrument with Minimised Part Assembly; TU Delft Repository: Delft, The Netherlands, 2021. [Google Scholar]
- van den Noort, J.C.; van Beek, N.; van der Kraan, T.; Veeger, D.H.E.J.; Stegeman, D.F.; Veltink, P.H.; Maas, H. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion. PLoS ONE 2016, 11, e0168636. [Google Scholar] [CrossRef]
- Rachaveti, D.; Chakrabhavi, N.; Shankar, V.; Skm, V. Thumbs up: Movements Made by the Thumb Are Smoother and Larger than Fingers in Finger-Thumb Opposition Tasks. PeerJ 2018, 6, e5763. [Google Scholar] [CrossRef]
- Xu, J.; Mawase, F.; Schieber, M.H. Evolution, Biomechanics, and Neurobiology Converge to Explain Selective Finger Motor Control. Physiol. Rev. 2024, 104, 983–1020. [Google Scholar] [CrossRef]
- Arauz, P.; Sisto, S.A.; Kao, I. Experimental Study of the Optimal Angle for Arthrodesis of Fingers Based on Kinematic Analysis with Tip-Pinch Manipulation. J. Biomech. 2016, 49, 4009–4015. [Google Scholar] [CrossRef] [PubMed]
- Bullock, I.M.; Feix, T.; Dollar, A.M. Workspace Shape and Characteristics for Human Two- and Three-Fingered Precision Manipulation. IEEE Trans. Biomed. Eng. 2015, 62, 2196–2207. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Balash, C. Towards an Improved Intuitive Interface for Remotely Operated Vehicles. J. Ocean Eng. Sci. 2020, 5, 346–357. [Google Scholar] [CrossRef]
- Rommel, B. TOP 8 Hidden BMW iDrive Features—Revealed|BimmerTech. Available online: https://www.bimmer-tech.net/blog/item/128-idrive-hidden-features (accessed on 20 December 2023).
- Bezek, S. GitHub—Scottbez1/Smartknob: Haptic Input Knob with Software-Defined Endstops and Virtual Detents. Available online: https://github.com/scottbez1/smartknob (accessed on 20 December 2023).
- Ekşioğlu, M.; İşeri, A. An Estimation of Finger-Tapping Rates and Load Capacities and the Effects of Various Factors. Hum. Factors 2015, 57, 634–648. [Google Scholar] [CrossRef]
- Conway, B.J.; Taquet, L.; Boerger, T.F.; Young, S.C.; Krucoff, K.B.; Schmit, B.D.; Krucoff, M.O. Quantitative Assessments of Finger Individuation with an Instrumented Glove. J. NeuroEng. Rehabil. 2023, 20, 48. [Google Scholar] [CrossRef]
- Pylatiuk, C.; Kargov, A.; Schulz, S.; Döderlein, L. Distribution of Grip Force in Three Different Functional Prehension Patterns. J. Med. Eng. Technol. 2006, 30, 176–182. [Google Scholar] [CrossRef]
- Maleki-Ghahfarokhi, A.; Dianat, I.; Azghani, M.; Asghari-Jafarabadi, M.; Parnianpour, M. T-Shaped Handle Set-up: Effects of Handle Diameter, between-Handle Distance, Workpiece Orientation, Working Height, and Exertion Direction on Two-Handed Torque Strength, Usability, Comfort, and Discomfort. Ergonomics 2023, 66, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Pheasant, S.; O’neill, D. Performance in Gripping and Turning—A Study in Hand/Handle Effectiveness. Appl. Ergon. 1975, 6, 205–208. [Google Scholar] [CrossRef]
- Dianat, I.; Rahimi, S.; Nedaei, M.; Jafarabadi, M.A.; Oskouei, A.E. Effects of Tool Handle Dimension and Workpiece Orientation and Size on Wrist Ulnar/Radial Torque Strength, Usability and Discomfort in a Wrench Task. Appl. Ergon. 2017, 59, 422–430. [Google Scholar] [CrossRef]
- Kong, Y.-K.; Lowe, B.D. Evaluation of Handle Diameters and Orientations in a Maximum Torque Task. Int. J. Ind. Ergon. 2005, 35, 1073–1084. [Google Scholar] [CrossRef]
- Manasnayakorn, S.; Cuschieri, A.; Hanna, G.B. Ideal Manipulation Angle and Instrument Length in Hand-Assisted Laparoscopic Surgery. Surg. Endosc. 2008, 22, 924–929. [Google Scholar] [CrossRef] [PubMed]
- 30 GB/T 10000-2023; Human Dimensions of Chinese Adults. National Standards of the People’s Republic of China: Beijing, China, 2023.
- 31 GB/T 16252-2023; Hand Sizing System of Adults. National Standards of the People’s Republic of China: Beijing, China, 2023.
- ISO/TR 7250; Basic Human Body Measurements for Technological Design. Part 2: Statistical Summaries of Body Measurements from National Populations. ISO: Geneva, Switzerland, 2024.
- ANSI/HFES 100-2007; Human Factors Engineering of Computer Workstations. Human Factors and Ergonomics Society: Santa Monica, CA, USA, 2007.
- McCambridge, J.; De Bruin, M.; Witton, J. The Effects of Demand Characteristics on Research Participant Behaviours in Non-Laboratory Settings: A Systematic Review. PLoS ONE 2012, 7, e39116. [Google Scholar] [CrossRef] [PubMed]
- Lachnit, H.; Pieper, W. Speed and Accuracy Effects of Fingers and Dexterity in 5-Choice Reaction Tasks. Ergonomics 1990, 33, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Kruger, E.S.; Hoopes, J.A.; Cordial, R.J.; Li, S. Error Compensation during Finger Force Production after One- and Four-Finger Voluntarily Fatiguing Exercise. Exp. Brain Res. 2007, 181, 461–468. [Google Scholar] [CrossRef]
- Avanzino, L.; Tacchino, A.; Abbruzzese, G.; Quartarone, A.; Ghilardi, M.F.; Bonzano, L.; Ruggeri, P.; Bove, M. Recovery of Motor Performance Deterioration Induced by a Demanding Finger Motor Task Does Not Follow Cortical Excitability Dynamics. Neuroscience 2011, 174, 84–90. [Google Scholar] [CrossRef]
Measurements (mm) | Percentiles | |||||||
---|---|---|---|---|---|---|---|---|
P1 | P5 | P10 | P50 | P90 | P95 | P99 | ||
1 | Hand Breadth | 78 | 81 | 82 | 88 | 94 | 96 | 100 |
2 | Hand Length | 165 | 171 | 174 | 184 | 195 | 198 | 204 |
3 | Little Finger Breadth | |||||||
4 | Ring Finger Breadth | |||||||
5 | Middle Finger Breadth | |||||||
6 | Index Finger Breadth | |||||||
7 | Thumb Length | |||||||
8 | Index Finger Length |
Dependent Variable | Independent Variables | F Value | p Value | |
---|---|---|---|---|
Index finger | Body size percentiles (P10/P50/P90) | Upper limit | 3.960149 | 0.048618 |
Lower limit | 1.061501 | 0.376292 | ||
Minimum depth | 1.149948 | 0.349213 | ||
Maximum depth | 4.874215 | 0.028218 | ||
Thumb finger | Body size percentiles (P10/P50/P90) | Upper limit | 4.452485 | 0.039381 |
Bottom limit | 0.371513 | 0.697352 | ||
Maximum depth | 4.051831 | 0.0467882 |
Upper Limit (mm) | Lower Limit (mm) | Minimum Depth (mm) | Maximum Depth (mm) | ||
---|---|---|---|---|---|
Index finger operation area | P10 | 15.67 | 61.74 | ||
P50 | 23.89 | 71.85 | |||
P90 | 29.7 | 75.55 | |||
Average | −22.57 | 29.35 | |||
Thumb deflection operation area | P10 | 6.44 | 15.37 | ||
P50 | 10.97 | 21.87 | |||
P90 | 14.4 | 26.10 | |||
Average | −20.78 | 0(set) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Dong, X.; Liu, X.; Zhuo, S.; Ren, J.; Wang, M. Optimizing Joystick Button Layout for Males: An Incremental Approach Based on Gripping Operational Features. Appl. Sci. 2025, 15, 3019. https://doi.org/10.3390/app15063019
Yang T, Dong X, Liu X, Zhuo S, Ren J, Wang M. Optimizing Joystick Button Layout for Males: An Incremental Approach Based on Gripping Operational Features. Applied Sciences. 2025; 15(6):3019. https://doi.org/10.3390/app15063019
Chicago/Turabian StyleYang, Tian, Xiaoyan Dong, Xixi Liu, Shiyu Zhuo, Jie Ren, and Mei Wang. 2025. "Optimizing Joystick Button Layout for Males: An Incremental Approach Based on Gripping Operational Features" Applied Sciences 15, no. 6: 3019. https://doi.org/10.3390/app15063019
APA StyleYang, T., Dong, X., Liu, X., Zhuo, S., Ren, J., & Wang, M. (2025). Optimizing Joystick Button Layout for Males: An Incremental Approach Based on Gripping Operational Features. Applied Sciences, 15(6), 3019. https://doi.org/10.3390/app15063019