Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Aqua Vest Training Program
2.4. Data Analysis
2.5. Statistical Analyses
3. Results
3.1. Knee Pain
3.2. Spatiotemporal Parameters
3.3. CoP Measurements
3.4. Joint Kinematics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DKA | Degenerative knee arthritis |
OA | Osteoarthritis |
COP | Center of pressure |
AP | Anterior–posterior |
ML | Medial–lateral |
ADL | Activity of daily living |
ROM | Range of motion |
VAS | Visual analog scale |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
IRB | Institutional Review Board |
EG | Exercise group |
CG | Control group |
VGRF | Vertical ground reaction force |
RMS | Root mean square |
DNS | Dynamic Neuromuscular Stabilization |
WT | Water-filled tube |
References
- Ditroilo, M.; O’Sullivan, R.; Harnan, B.; Crossey, A.; Gillmor, B.; Dardis, W.; Grainger, A. Water-Filled Training Tubes Increase Core Muscle Activation and Somatosensory Control of Balance During Squat. J. Sports Sci. 2018, 36, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, L.; Mao, M.; Sun, W.; Zhang, C.; Mao, D.; Song, Q. The Relationships of Postural Stability with Muscle Strength and Proprioception are Different Among Older Adults Over and Under 75 Years of Age. J. Exerc. Sci. Fit. 2022, 20, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Turcot, K.; Hagemeister, N.; de Guise, J.A.; Aissaoui, R. Evaluation of Unipodal Stance in Knee Osteoarthritis Patients Using Knee Accelerations and Center of Pressure. Osteoarthr. Cartil. 2011, 19, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Hirata, R.P.; Arendt-Nielsen, L.; Shiozawa, S.; Graven-Nielsen, T. Experimental Knee Pain Impairs Postural Stability During Quiet Stance but not After Perturbations. Eur. J. Appl. Physiol. 2012, 112, 2511–2521. [Google Scholar] [CrossRef]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef]
- Huang, M.; Yick, K.L.; Ng, S.P.; Yip, J.; Cheung, R.T.H. The Effect of Support Surface and Footwear Condition on Postural Sway and Lower Limb Muscle Action of the Older Women. PLoS ONE 2020, 15, e0234140. [Google Scholar] [CrossRef]
- Phinyomark, A.; Osis, S.T.; Hettinga, B.A.; Kobsar, D.; Ferber, R. Gender Differences in Gait Kinematics for Patients with Knee Osteoarthritis. BMC Musculoskelet. Disord. 2016, 17, 157. [Google Scholar] [CrossRef]
- Hsue, B.J.; Su, F.C. Effects of Age and Gender on Dynamic Stability During Stair Descent. Arch. Phys. Med. Rehabil. 2014, 95, 1860–1869. [Google Scholar] [CrossRef]
- Singhal, K.; Kim, J.; Casebolt, J.; Lee, S.; Han, K.H.; Kwon, Y.H. Kinetic Comparison of Older Men and Women During Walk-to-Stair Descent Transition. Gait Posture 2014, 40, 600–604. [Google Scholar] [CrossRef]
- Kováčiková, Z.; Sarvestan, J.; Zemková, E. Age-Related Differences in Stair Descent Balance Control: Are Women More Prone to Falls Than Men? PLoS ONE 2021, 16, e0244990. [Google Scholar] [CrossRef]
- Rhea, C.K.; Kiefer, A.W.; Haran, F.; Glass, S.M.; Warren, W.H. A New Measure of the CoP Trajectory in Postural Sway: Dynamics of Heading Change. Med. Eng. Phys. 2014, 36, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Perraton, L.G.; Stevermer, C.A.; Gillette, J.C. Alterations in Medial-Lateral Postural Control after Anterior Cruciate Ligament Reconstruction during Stair Use. Gait Posture 2020, 77, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Hicks-Little, C.A.; Peindl, R.D.; Hubbard, T.J.; Scannell, B.P.; Springer, B.D.; Odum, S.M.; Fehring, T.K.; Cordova, M.L. Lower Extremity Joint Kinematics during Stair Climbing in Knee Osteoarthritis. Med. Sci. Sports Exerc. 2011, 43, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Hu, X. Lower-Extremity Kinematics and Postural Stability during Stair Negotiation: Effects of Two Cognitive Tasks. Clin. Biomech. 2014, 29, 40–46. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip Contact Forces and Gait Patterns from Routine Activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Lewis, J.; Freisinger, G.; Pan, X.; Siston, R.; Schmitt, L.; Chaudhari, A. Changes in Lower Extremity Peak Angles, Moments and Muscle Activations during Stair Climbing at Different Speeds. J. Electromyogr. Kinesiol. 2015, 25, 982–989. [Google Scholar] [CrossRef]
- Wang, J.; Gillette, J.C. Mediolateral Postural Stability when Carrying Asymmetric Loads during Stair Negotiation. Appl. Ergon. 2020, 85, 103057. [Google Scholar] [CrossRef]
- de Zwart, A.H.; van der Esch, M.; Pijnappels, M.A.; Hoozemans, M.J.; van der Leeden, M.; Roorda, L.D.; Dekker, J.; Lems, W.F.; van Dieën, J.H. Falls Associated with Muscle Strength in Patients with Knee Osteoarthritis and Self-Reported Knee Instability. J. Rheumatol. 2015, 42, 1218–1223. [Google Scholar] [CrossRef]
- Levinger, P.; Dunn, J.; Bifera, N.; Butson, M.; Elias, G.; Hill, K.D. High-Speed Resistance Training and Balance Training for People with Knee Osteoarthritis to Reduce Falls Risk: Study Protocol for a Pilot Randomized Controlled Trial. Trials 2017, 18, 384. [Google Scholar] [CrossRef]
- Hicks, C.; Levinger, P.; Menant, J.C.; Lord, S.R.; Sachdev, P.S.; Brodaty, H.; Sturnieks, D.L. Reduced Strength, Poor Balance and Concern about Falls Mediate the Relationship between Knee Pain and Fall Risk in Older People. BMC Geriatr. 2020, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Wang, Y.; Ge, L.; Pan, F.; Winzenberg, T.; Cai, G. Association of Knee and Hip Osteoarthritis with the Risk of Falls and Fractures: A Systematic Review and Meta-Analysis. Arthritis Res. Ther. 2023, 25, 184. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; Oddone, E.Z.; O’Malley, K.J. Low-Intensity Aerobic Exercise for Osteoarthritis of the Knee: A Systematic Review of Randomized Controlled Trials. J. Rheumatol. 2010, 37, 2393–2398. [Google Scholar] [CrossRef]
- Hinman, R.S.; Hall, M.; Pua, Y.H. Effectiveness of Gait Training for People with Knee Osteoarthritis: A Systematic Review. J. Orthop. Sports Phys. Ther. 2014, 44, 348–356. [Google Scholar] [CrossRef]
- Ciolac, E.G.; Silva, J.M.; Greve, J.M. Effects of Resistance Training in Older Women with Knee Osteoarthritis and Total Knee Arthroplasty. Clinics 2015, 70, 7–13. [Google Scholar] [CrossRef]
- Li, S.; Ng, W.H.; Abujaber, S.; Shaharudin, S. Effects of Resistance Training on Gait Velocity and Knee Adduction Moment in Knee Osteoarthritis Patients: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 16104. [Google Scholar] [CrossRef]
- Slemenda, C.W.; Miller, J.L.; Krishnan, S. Effectiveness of Balance Training on Knee Osteoarthritis: A Meta-Analysis. J. Orthop. Res. 2017, 35, 1135–1142. [Google Scholar] [CrossRef]
- Sell, K.; Taveras, K.; Ghigiarelli, J. Sandbag Training: A Sample 4-Week Training Program. Strength Cond. J. 2011, 33, 88–96. [Google Scholar] [CrossRef]
- Calatayud, J.; Colado, J.C.; Martin, F.; Casaña, J.; Jakobsen, M.D.; Andersen, L.L. Core Muscle Activity during the Clean and Jerk Lift with Barbell versus Sandbags and Water Bags. Int. J. Sports Phys. Ther. 2015, 10, 803–810. [Google Scholar]
- Behm, D.G.; Anderson, K.G. The Role of Instability with Resistance Training. J. Strength Cond. Res. 2006, 20, 716–722. [Google Scholar]
- Lawrence, M.A.; Carlson, L.A. Effects of an Unstable Load on Force and Muscle Activation during a Parallel Back Squat. J. Strength Cond. Res. 2015, 29, 2949–2953. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.; Colado, J.C. The Effectiveness of Resistance Training Using Unstable Surfaces and Devices for Rehabilitation. Int. J. Sports Phys. Ther. 2012, 7, 226. [Google Scholar] [PubMed]
- Behm, D.G.; Colado Sanchez, J.C. Instability Resistance Training across the Exercise Continuum. Sports Health 2013, 5, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench Press Upper-Body Muscle Activation between Stable and Unstable Loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef]
- Ostrowski, S.J.; Carlson, L.A.; Lawrence, M.A. Effect of an Unstable Load on Primary and Stabilizing Muscles during the Bench Press. J. Strength Cond. Res. 2017, 31, 430–434. [Google Scholar] [CrossRef]
- Wezenbeek, E.; Verhaeghe, L.; Laveyne, K.; Ravelingien, L.; Witvrouw, E.; Schuermans, J. The Effect of Aquabag Use on Muscle Activation in Functional Strength Training. J. Sport Rehabil. 2022, 31, 420–427. [Google Scholar] [CrossRef]
- Fransen, M.; McConnell, S.; Harmer, A.R.; Van der Esch, M.; Simic, M.; Bennell, K.L. Exercise for Osteoarthritis of the Knee: A Cochrane Systematic Review. Br. J. Sports Med. 2015, 49, 1554–1557. [Google Scholar] [CrossRef]
- Weng, Q.; Goh, S.L.; Wu, J.; Persson, M.S.M.; Wei, J.; Sarmanova, A.; Li, X.; Hall, M.; Doherty, M.; Jiang, T.; et al. Comparative Efficacy of Exercise Therapy and Oral Non-Steroidal Anti-Inflammatory Drugs and Paracetamol for Knee or Hip Osteoarthritis: A Network Meta-Analysis of Randomized Controlled Trials. Br. J. Sports Med. 2023, 57, 990–996. [Google Scholar] [CrossRef]
- Kang, S.; Park, I.; Ha, M.S. Effect of Dynamic Neuromuscular Stabilization Training Using the Inertial Load of Water on Functional Movement and Postural Sway in Middle-Aged Women: A Randomized Controlled Trial. BMC Women’s Health 2024, 24, 154. [Google Scholar] [CrossRef]
- Protopapadaki, A.; Drechsler, W.I.; Cramp, M.C.; Coutts, F.J.; Scott, O.M. Hip, Knee, Ankle Kinematics and Kinetics during Stair Ascent and Descent in Healthy Young Individuals. Clin. Biomech. 2007, 22, 203–210. [Google Scholar] [CrossRef]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, G. Loading of the Knee Joint during Activities of Daily Living Measured In Vivo in Five Subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Son, H.; Kim, K. A Kinematic Analysis of Patients with Knee Osteoarthritis during Gait on Level Ground, Ramps and Stairs. J. Phys. Ther. Sci. 2013, 25, 277–280. [Google Scholar] [CrossRef]
- Duffell, L.D.; Southgate, D.F.; Gulati, V.; McGregor, A.H. Balance and Gait Adaptations in Patients with Early Knee Osteoarthritis. Gait Posture 2014, 39, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Bacon, K.L.; Felson, D.T.; Jafarzadeh, S.R.; Kolachalama, V.B.; Hausdorff, J.M.; Gazit, E.; Segal, N.A.; Lewis, C.E.; Nevitt, M.C.; Kumar, D. Relation of Gait Measures with Mild Unilateral Knee Pain during Walking Using Machine Learning. Sci. Rep. 2022, 12, 22200. [Google Scholar] [CrossRef]
- Park, J.W.; Jung, M.; Kweon, M. The Mediolateral CoP Parameters Can Differentiate the Fallers among the Community-Dwelling Elderly Population. J. Phys. Ther. Sci. 2014, 26, 381–384. [Google Scholar] [CrossRef]
- Kibele, A.; Behm, D.G. Seven Weeks of Instability and Traditional Resistance Training Effects on Strength, Balance and Functional Performance. J. Strength Cond. Res. 2009, 23, 2443–2450. [Google Scholar] [CrossRef]
- Nairn, B.C.; Sutherland, C.A.; Drake, J.D. Motion and Muscle Activity Are Affected by Instability Location During a Squat Exercise. J. Strength Cond. Res. 2017, 31, 677–685. [Google Scholar] [CrossRef]
- Wahl, M.J.; Behm, D.G. Not All Instability Training Devices Enhance Muscle Activation in Highly Resistance-Trained Individuals. J. Strength Cond. Res. 2008, 22, 1360–1370. [Google Scholar] [CrossRef]
- Nairn, B.C.; Sutherland, C.A.; Drake, J.D. Location of Instability during a Bench Press Alters Movement Patterns and Electromyographical Activity. J. Strength Cond. Res. 2015, 29, 3162–3170. [Google Scholar] [CrossRef]
- Glass, S.C.; Albert, R.W. Compensatory Muscle Activation during Unstable Overhead Squat Using a Water-Filled Training Tube. J. Strength Cond. Res. 2018, 32, 1230–1237. [Google Scholar] [CrossRef]
- Steiner, E.; Boyer, K.A. Variable Stiffness Shoes for Knee Osteoarthritis: An Evaluation of 3-Dimensional Gait Mechanics and Medial Joint Contact Forces. J. Appl. Biomech. 2022, 38, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P.; Syta, A. Multi-Scale Analysis of Knee Joint Acoustic Signals for Cartilage Degeneration Assessment. Sensors 2025, 25, 706. [Google Scholar] [CrossRef]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P.; Syta, A. Application of Recurrence Quantification Analysis in the Detection of Osteoarthritis of the Knee with the Use of Vibroarthrography. Adv. Sci. Technol. Res. J. 2024, 18, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P. Application of EEMD-DFA Algorithms and ANN Classification for Detection of Knee Osteoarthritis Using Vibroarthrography. Appl. Comput. Sci. 2024, 20, 90–108. [Google Scholar] [CrossRef]
EG (N = 15) | CG (N = 15) | p-Value | |
---|---|---|---|
Age (yr) | 55.73 ± 3.83 | 55.67 ± 3.16 | 0.959 |
Weight (kg) | 58.87 ± 6.69 | 57.25 ± 5.69 | 0.483 |
Height (cm) | 159.02 ± 4.12 | 156.75 ± 3.65 | 0.121 |
BMI (kg/m2) | 0.23 ± 0.02 | 0.23 ± 0.02 | 0.993 |
EG (N = 15) | CG (N = 15) | t | ||
---|---|---|---|---|
VAS (cm) | Pre | 4.33 ± 1.05 | 3.80 ± 1.01 | −1.417 |
Post | 1.20 ± 1.03 | 4.27 ± 1.08 | 7.939 *** | |
t | 7.650 *** | −1.542 |
Stair Ascent | Stair Descent | |||||
---|---|---|---|---|---|---|
Variables | Training | EG | CG | EG | CG | |
Stride Time (s) | Non-dominant | pre | 1.55 ± 0.24 | 1.57 ± 0.14 | 1.28 ± 0.25 | 1.28 ± 0.11 |
post | 1.35 ± 0.09 **, † | 1.54 ± 0.14 | 1.17 ± 0.09 *, † | 1.28 ± 0.12 | ||
Dominant | pre | 1.56 ± 0.24 | 1.57 ± 0.15 | 1.27 ± 0.24 | 1.28 ± 0.12 | |
post | 1.36 ± 0.09 **, † | 1.53 ± 0.14 | 1.16 ± 0.09 *, † | 1.33 ± 0.19 | ||
Step Time (s) | Non-dominant | pre | 0.79 ± 0.11 | 0.81 ± 0.07 | 0.63 ± 0.13 | 0.62 ± 0.06 |
post | 0.70 ± 0.04 **, † | 0.78 ± 0.08 | 0.58 ± 0.04† | 0.62 ± 0.06 | ||
Dominant | pre | 0.79 ± 0.13 | 0.79 ± 0.08 | 0.63 ± 0.12 | 0.62 ± 0.06 | |
post | 0.69 ± 0.06 **, † | 0.78 ± 0.08 | 0.58 ± 0.05 *, † | 0.63 ± 0.05 | ||
Stride Length (m) | Non-dominant | pre | 0.64 ± 0.02 | 0.64 ± 0.01 | 0.74 ± 0.04 | 0.74 ± 0.04 |
post | 0.64 ± 0.01 | 0.64 ± 0.01 | 0.77 ± 0.05 * | 0.76 ± 0.07 | ||
Dominant | pre | 0.65 ± 0.01 | 0.64 ± 0.01 | 0.73 ± 0.03 | 0.74 ± 0.03 | |
post | 0.64 ± 0.02 | 0.64 ± 0.01 | 0.77 ± 0.05 *, † | 0.73 ± 0.04 | ||
Step Length (m) | Non-dominant | pre | 0.32 ± 0.01 | 0.32 ± 0.01 | 0.43 ± 0.04 | 0.41 ± 0.04 |
post | 0.33 ± 0.01 | 0.33 ± 0.01 | 0.45 ± 0.05 * | 0.43 ± 0.07 | ||
Dominant | pre | 0.33 ± 0.01 | 0.32 ± 0.01 | 0.41 ± 0.03 | 0.43 ± 0.04 | |
post | 0.32 ± 0.01 | 0.33 ± 0.01 | 0.45 ± 0.05 *, † | 0.41 ± 0.04 | ||
Walking Speed (m/s) | Non-dominant | pre | 0.43 ± 0.07 | 0.41 ± 0.04 | 0.60 ± 0.11 | 0.58 ± 0.07 |
post | 0.48 ± 0.03 **, † | 0.42 ± 0.04 | 0.66 ± 0.08 *, † | 0.60 ± 0.08 | ||
Dominant | pre | 0.43 ± 0.06 | 0.41 ± 0.04 | 0.60 ± 0.11 | 0.59 ± 0.07 | |
post | 0.47 ± 0.03 **, † | 0.42 ± 0.03 | 0.67 ± 0.08 **, † | 0.57 ± 0.10 |
Group | |||
---|---|---|---|
Variables | Training | EG (N = 15) | CG (N = 15) |
AP Range (cm) | pre | 29.73 ± 1.68 | 31.10 ± 12.38 |
post | 37.85 ± 12.24 * | 30.64 ± 16.56 | |
AP Excursion (cm) | pre | 38.34 ± 3.53 | 40.46 ± 15.57 |
post | 58.15 ± 12.85 ***, † | 42.40 ± 17.34 | |
AP Velocity (cm/s) | pre | 6.53 ± 0.73 | 6.89 ± 2.35 |
post | 9.74 ± 1.88 ***, † | 7.12 ± 2.34 | |
AP RMS (cm) | pre | 6.68 ± 0.67 | 6.36 ± 1.29 |
post | 1.48 ± 0.81 ***, † | 6.42 ± 1.42 | |
ML Range (cm) | pre | 24.78 ± 1.95 | 19.59 ± 9.57 |
post | 12.54 ± 7.06 ***, † | 19.51 ± 7.87 | |
ML Excursion (cm) | pre | 28.56 ± 2.11 | 26.89 ± 10.16 |
post | 19.38 ± 7.15 ***, † | 28.12 ± 10.43 | |
ML Velocity (cm/s) | pre | 4.11 ± 0.85 | 3.65 ± 1.44 |
post | 2.88 ± 0.99 **, † | 3.80 ± 1.40 | |
ML RMS (cm) | pre | 7.44 ± 0.69 | 7.06 ± 1.38 |
post | 4.51 ± 0.78 ***, † | 6.62 ± 0.97 | |
Total Excursion (cm) | pre | 46.84 ± 3.32 | 52.95 ± 10.86 |
post | 54.86 ± 13.57 * | 58.47 ± 14.58 | |
Total Velocity (cm/s) | pre | 6.98 ± 1.09 | 7.60 ± 2.09 |
post | 9.54 ± 1.60 ***, † | 7.89 ± 1.96 |
Stair Ascent | Stair Descent | |||||
---|---|---|---|---|---|---|
Angle Variables (°) | Training | EG | CG | EG | CG | |
Ankle Dorsi–plantar flexion ROM | Non-dominant | pre | 39.46 ± 5.96 | 44.29 ± 6.86 | 28.71 ± 6.26 | 27.83 ± 9.66 |
post | 42.77 ± 4.33 * | 45.38 ± 7.23 | 34.40 ± 10.36 * | 29.79 ± 8.49 | ||
Dominant | pre | 39.15 ± 6.83 | 43.53 ± 6.22 | 29.89 ± 4.35 | 28.52 ± 7.95 | |
post | 41.72 ± 5.59 | 45.13 ± 5.92 | 33.81 ± 11.34 | 31.28 ± 8.64 | ||
Ankle Inversion–eversion ROM | Non-dominant | pre | 4.65 ± 1.81 | 3.60 ± 1.68 | 2.46 ± 1.08 | 2.73 ± 1.43 |
post | 4.15 ± 1.99 | 3.12 ± 1.61 | 2.73 ± 1.55 | 3.03 ± 1.69 | ||
Dominant | pre | 4.03 ± 2.33 | 3.13 ± 1.86 | 2.41 ± 2.02 | 3.39 ± 3.03 | |
post | 3.16 ± 1.53 | 2.96 ± 1.96 | 2.05 ± 1.52 | 5.46 ± 9.46 | ||
Hip Flexion–extensionROM | Non-dominant | pre | 57.53 ± 2.84 | 58.11 ± 3.97 | 9.67 ± 3.69 | 10.75 ± 3.15 |
post | 52.09 ± 4.04 *, † | 57.22 ± 3.29 | 6.75 ± 3.85 *, † | 11.74 ± 5.22 | ||
Dominant | pre | 58.17 ± 3.71 | 57.42 ± 3.45 | 9.86 ± 3.35 | 10.75 ± 5.48 | |
post | 50.99 ± 3.49 *, † | 56.76 ± 4.45 | 7.42 ± 3.59 *, † | 10.55 ± 4.00 | ||
Hip Adduction–abduction ROM | Non-dominant | pre | 14.23 ± 3.79 | 13.07 ± 6.01 | 6.87 ± 2.60 | 7.24 ± 3.92 |
post | 13.51 ± 3.57 | 13.40 ± 5.96 | 7.49 ± 3.53 | 6.64 ± 3.62 | ||
Dominant | pre | 15.04 ± 3.58 | 13.10 ± 4.12 | 6.29 ± 2.41 | 7.11 ± 3.70 | |
post | 14.62 ± 4.69 | 13.64 ± 4.89 | 7.21 ± 3.39 | 7.77 ± 4.15 | ||
Knee Flexion–extension ROM | Non-dominant | pre | 56.22 ± 3.55 | 56.95 ± 6.95 | 71.79 ± 4.90 | 72.15 ± 4.63 |
post | 46.84 ± 4.18 *, † | 53.68 ± 4.58 | 77.09 ± 7.19 *, † | 70.39 ± 5.95 | ||
Dominant | pre | 56.13 ± 2.82 | 54.66 ± 4.77 | 69.52 ± 6.32 | 72.37 ± 6.01 | |
post | 46.49 ± 4.97 *, † | 53.88 ± 3.93 | 69.09 ± 9.42† | 74.65 ± 4.53 | ||
Knee Adduction–abduction ROM | Non-dominant | pre | 18.86 ± 5.20 | 15.76 ± 8.03 | 8.75 ± 6.40 | 13.57 ± 8.68 |
post | 17.99 ± 3.74 | 18.44 ± 11.42 | 10.02 ± 5.79 | 15.87 ± 10.27 | ||
Dominant | pre | 13.50 ± 11.16 | 10.45 ± 7.13 | 15.53 ± 15.06 | 19.90 ± 12.89 | |
post | 9.72 ± 8.40 | 9.91 ± 4.23 | 13.11 ± 12.42 | 18.62 ± 13.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Kang, S.; Park, I. Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis. Appl. Sci. 2025, 15, 2992. https://doi.org/10.3390/app15062992
Huang Y, Kang S, Park I. Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis. Applied Sciences. 2025; 15(6):2992. https://doi.org/10.3390/app15062992
Chicago/Turabian StyleHuang, Yuanyan, Shuho Kang, and Ilbong Park. 2025. "Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis" Applied Sciences 15, no. 6: 2992. https://doi.org/10.3390/app15062992
APA StyleHuang, Y., Kang, S., & Park, I. (2025). Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis. Applied Sciences, 15(6), 2992. https://doi.org/10.3390/app15062992