Influence of Nitrogen Bioavailability on the Anaerobic Co-Digestion of the Aegagropiles of the Seagrass Posidonia oceanica with Different Nitrogen-Rich Substrates: Process Performance and Kinetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Main Characterization of the Material
2.2. Biomethanization Tests
2.3. Kinetic Study
2.4. Statistical Analysis
3. Results and Discussion
3.1. Posidonia Oceanica Characterization
3.2. Co-Substrate Characterization
3.3. Digestate Main Characteristics
3.4. Kinetic Modelling
3.4.1. First-Order Kinetic Model
3.4.2. Transference Function Model (TFM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Kinetic Modeling
Appendix A.1. First-Order Kinetic Model
Appendix A.2. Transference Function Model
References
- Murphy, G.E.P.; Dunic, J.C.; Adamczyk, E.M.; Bittick, S.J.; Côté, I.M.; Cristiani, J.; Wong, M.C. From coast to coast to coast: Ecology and management of seagrass ecosystems across Canada. Facets 2021, 6, 139–179. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Guillén, J.E.; Ramos Segura, A.; Otero, M.M. Atlas de las Praderas Marinas de España Instituto Español de Oceanografía. 2015. Available online: https://www.iucn.org/es/content/atlas-de-las-praderas-marinas-de-espana (accessed on 12 October 2023).
- Azcárate-García, T.; Beca-Carretero, P.; Brun, F.G. Plant and meadow structure characterisation of Posidonia oceanica in its westernmost distribution range. Diversity 2023, 15, 101. [Google Scholar] [CrossRef]
- De Sanctis, M.; Di Iaconi, C. Evaluation of posidonia oceanica residues as feedstock for anaerobic digestion. Bioresour. Technol. Rep. 2019, 8, 100317. [Google Scholar] [CrossRef]
- European Union. Council Directive 97/62/EC of 27 October 1997 adapting Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities 1997, L305, 42–65. [Google Scholar]
- Hachana, Y.; Jebbari, A.; El Mejdoub, H.; Yousfi, W.; Fortina, R. Seagrass debris as source of fiber and bioactive compounds in feed for dairy goats. Int. J. Agric. Biol. 2021, 26, 722–730. [Google Scholar] [CrossRef]
- Schorn, S.; Ahmerkamp, S.; Bullock, E.; Weber, M.; Lott, C.; Liebeke, M.; Lavik, G.; Kuypers, M.M.M.; Graf, J.S.; Milucka, J. Diverese methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc. Natl. Acad. Sci. USA 2022, 119, e2106628119. [Google Scholar] [CrossRef]
- Lefebvre, L.; Compère, P.; Léonard, A.; Plougonven, E.; Vandewalle, N.; Gobert, S. Mediterranean aegagropiles from Posidonia oceanica (L) delile (1813): A first complete description from macroscopic to microscopic structure. Mar. Biol. 2021, 168, 37. [Google Scholar] [CrossRef]
- Lefebvre, L.; Compère, P.; Gobert, S. The formation of aegagropiles from the mediterranean seagrass Posidonia oceanica (L) delile (1813): Plant tissue sources and colonisation by melanised fungal mycelium. Mar. Biol. 2023, 170, 19. [Google Scholar] [CrossRef]
- Sanchez-Vidal, A.; Canals, M.; de Haan, W.P.; Romero, J.; Veny, M. Seagrasses provide a novel ecosystem service by trapping marine plastics. Sci. Rep. 2021, 11, 254. [Google Scholar] [CrossRef]
- Parente, A.; Serio, F.; Montesano, F.F.; Mininni, C.; Santamaria, P. The compost of posidonia residues: A short review on a new component for soilless growing media. ISHS Acta Horticult. 2014, 1034, 291–298. [Google Scholar] [CrossRef]
- Parente, A.; Montesano, F.F.; Lomoro, A.; Guido, M. Improvement of beached Posidonia residues performance to composting. Environ. Eng. Manag. J. 2013, 12, 81–84. [Google Scholar]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sust. Energ. Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Sun, S.; Zhao, Y.; Hu, C. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage. Sew. Sci. Rep. 2017, 7, 10897. [Google Scholar] [CrossRef]
- Karrabi, M.; Ranjbar, F.M.; Shahnavaz, B.; Seyedi, S. A comprehensive review on biogas production from lignocellulosic wastes through anaerobic digestion: An insight into performance improvement strategies. Fuel 2023, 340, 127239. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed; American Public Health Association: Washington, WA, USA, 2017. [Google Scholar]
- Raposo, F.; de la Rubia, M.A.; Borja, R.; Alaiz, M. Assessment of a modified and optimised method for deter-mining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta 2008, 76, 448–453. [Google Scholar] [CrossRef]
- USEPA. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments Sludges and Oils, 1st ed.; United States Environmental Protection Agency: Washington, WA, USA, 2007.
- De la Lama-Calvente, D.; Cubero, J.; Fernández-Rodríguez, M.J.; Jiménez-Rodríguez, A.; Borja, R. Anaerobic co-digestion of microalgae and industrial wastes: A critical and bibliometric review. In Progress in Microalgae Research—A Path for Shaping Sustainable Futures; Zepka, Q., o Jacob-Lopes, E., Costa Deprá, M., Eds.; Intech Open: London, UK, 2022; pp. 1–26. [Google Scholar]
- Gordon, W.G.; Semmett, W.F.; Cable, R.S.; Morris, M. Amino acid composition of α-casein and β-Casein2. J. Am. Chem. Soc. 1949, 71, 3293–3297. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Puntano, N.F.; Mancilla-Leytón, J.M.; Borja, R. Batch mesophilic anaerobic co-digestion of spent goat straw bedding and goat cheese whey: Comparison with the mono-digestion of the two sole substrates. J. Environ. Manag. 2021, 280, 111733. [Google Scholar] [CrossRef]
- Casallas-Ojeda, M.; Meneses-Bejarano, S.; Urueña-Argote, R.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Techniques for quantifying methane production potential in the anaerobic digestion process. Waste Biomass Valori. 2022, 13, 2493–2510. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Fernández-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffi`ere, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- De la Lama-Calvente, D.; Fernández-Rodríguez, M.J.; Gandullo, J.; Desena, I.; de la Osa, C.; Feria, A.B.; Jiménez-Rodríguez, A.; Borja, R. Valorization of different landrace and commercial sorghum (Sorghum bicolor (L) moench) straw varieties by anaerobic digestion. Glob. Change Biol. 2022, 15, 332–345. [Google Scholar] [CrossRef]
- De la Lama-Calvente D, Fernández-Rodríguez MJ, García-Gómez JC, Borja R, Impact of natural degradation of the invasive alga Rugulopteryx okamurae on anaerobic digestion: Heavy metal pollution and kinetic performance. Mar. Pollut. Bull. 2023, 192, 115005. [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Naznee, S.; Mishra, A.K.; Raju, N.J.; Mehmood, G. Coastal macrophytes as bioindicators of trace metals in the Asia’s largest lagoon ecosystem. Mar. Pol. Bull. 2022, 178, 113576. [Google Scholar] [CrossRef]
- Warnau, M.; Ledent, G.; Temara, A.; Bouquegneau, J.M.; Jangoux, M.; Dubois, P. Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrass beds of the north-western. Mediterr. Sci. Total Environ. 1995, 171, 95–99. [Google Scholar] [CrossRef]
- Ward, T.J. Temporal variation of metals in the seagrass Posidonia australis and its potential as a sentinel accumulator near a lead smelter. Mar. Biol. 1987, 95, 315–321. [Google Scholar] [CrossRef]
- Öztürk, R.Ç.; Gedik, K.; Şahin, A.; Özvarol, Y.; Mutlu, E. Comparative trace element trends in Posidonia oceanica and its sediments along the Turkish-Mediterranean Sea coast. Environ. Sci. Pollut. Res. 2021, 28, 31697–61407. [Google Scholar] [CrossRef]
- Guo, Q.; Majeed, S.; Xu, R.; Zhang, K.; Kakade, A.; Kahn, A.; Hafeez, H.Y.; Mao, C.; Liu, P.; Li, X. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manag. 2019, 240, 266–272. [Google Scholar] [CrossRef]
- van Hullebusch, E.D.; Guibaud, G.; Simon, S.; Lenz, M.; Yekta, S.S.; Fermoso, F.G.; Jain, R.; Duester, L.; Roussel, J.; Guillon, E.; et al. Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1324–1366. [Google Scholar] [CrossRef]
- Alrawashdeh, K.A.; Gul, E.; Yang, Q.; Yang, H.; Bartocci, P.; Fantozzi, F. Effect of heavy metals in the performance of anaerobic digestion of olive mill waste. Processes 2020, 8, 1146. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, C.; Wang, Y.; Li, Y.; Han, T.; Gong, X.; Shan, M.; Li, G.; Luo, W. Enhancing biogas production from livestock manure in solid-state anaerobic digestion by sorghum-vinegar residues. Environ. Technol. Innov. 2022, 26, 102276. [Google Scholar] [CrossRef]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A review of the role of critical parameters in the design and operation of biogas production plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4067. [Google Scholar] [CrossRef]
- Hassan, M.; Masud, S.F.B.; Anwar, M.; Zhao, C.; Singh, R.S.; Mehryar, E. Methane enhancement by the co-digestion of thermochemical alkali solubilized rice husk and cow manure: Lignocellulosics decomposition perspectives. Biomass Convers. Biorefin 2023, 13, 13963–13975. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De la Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.C.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Rhee, C.; Park, S.G.; Yu, S.I.; Dalantai, T.; Shin, J.; Chae, K.J.; Shin, S.G. Mapping microbial dynamics in anaerobic digestion system linked with organic composition of substrates: Protein and lipid. Energy 2023, 275, 127411. [Google Scholar] [CrossRef]
- Malik, R.K.; Singh, R.; Tauro, P. Effect of inorganic nitrogen supplementation on biogas production. Biol. Wastes 1987, 21, 139–142. [Google Scholar] [CrossRef]
- Liu, L.; Du, Z.; Li, Y.; Han, R. Effects of urea addition on anaerobic digestion characteristics of hulless barley straw pretreated with KOH. J. Mater. Cycles Waste Manag. 2023, 25, 479–489. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, F.; Yan, M.; Tang, S.; Duan, Z.; Sun, Y.; Li, Y. Effect of ammonia on anaerobic digestion: Focusing on energy flow and electron transfer. Chem. Eng. J. 2023, 471, 144638. [Google Scholar] [CrossRef]
- Li, C.; Strömbergc, S.; Liu, G.; Nges, I.A.; Liu, J. Assessment of regional biomass as co-substrate in the anaerobic digestion of chicken manure: Impact of co-digestion with chicken processing waste seagrass and Miscanthus. Biochem. Eng. J. 2017, 118, 1–10. [Google Scholar] [CrossRef]
- Moretti, E.R.; Roston, D.M.; da Silva, A.J.; Pereda-Reyes, I. Biogas from aquatic plants: A bioenergetics incentive for constructed wetlands usage. Heliyon 2023, 9, e12537. [Google Scholar] [CrossRef] [PubMed]
- Dutra, J.C.F.; Passos, M.F.; da Silva, T.F.; Mockaitis, G. Pyrolysis and anaerobic digestion of the Egeria Densa biomass in different pretreatment conditions for potential use as a substrate in the generation of bioproducts. J. Water Process Eng. 2021, 40, 101772. [Google Scholar] [CrossRef]
- Li, L.; Kong, X.; Yang, F.; Li, D.; Yuan, Z.; Sun, Y. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Appl. Biochem. Biotechnol. 2012, 166, 1188–1191. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; De La Lama-Calvente, D.; García-González, M.; Moreno-Fernández, J.; Jiménez-Rodríguez, A.; Borja, R.; Rincón-Llorente, B. Integral valorization of two-phase olive mill solid waste (OMSW) and related washing waters by anaerobic co-digestion of OMSW and the microalga Raphidocelis subcapitata cultivated in these effluents. J. Agric. Food Chem. 2022, 70, 3219–3227. [Google Scholar] [CrossRef]
- Sarto, S.; Hildayat, R.; Syaichurrozi, I. Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew. Energ. 2019, 132, 335–350. [Google Scholar] [CrossRef]
- Scarcelli, P.G.; Serejo, M.L.; Paulo, P.L.; Boncz, M.Á. Evaluation of biomethanization during co-digestion of thermally pretreated microalgae and waste activated sludge, and estimation of its kinetic parameters. Sci. Total Environ. 2020, 706, 135745. [Google Scholar] [CrossRef]
- Wang, M.; Lee, E.; Dilbeck, M.P.; Liebelt, M.; Zhang, Q.; Ergas, S.J. Thermal pre-treatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. J. Chem. Technol. Biotechnol. 2017, 92, 399–407. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Perez-Elvira, S.I.; Fernández-Polanco, F. Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J. 2010, 160, 607–614. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; De la Lama-Calvente, D.; Jiménez-Rodríguez, A.; Borja, R.; Rincón-Llorente, B. Influence of the cell wall of Chlamydomonas reinhardtii on anaerobic digestion yield and on its anaerobic co-digestion with a carbon-rich substrate. Process Saf. Environ. Prot. 2019, 128, 167–175. [Google Scholar] [CrossRef]
Parameters | Posidonia Oceanica | Urea | Casein | Peptone | Synthetic Casein | Raphidocelis subcapitata |
---|---|---|---|---|---|---|
TS (g kg−1) | 880 ± 10 | 930 ± 30 | 917 ± 9 | 936 ± 2 | 993.1 ± 0.4 | 58 ± 9 |
VS (g kg−1) | 780 ± 10 | 921 ± 60 | 899 ± 3 | 878 ± 3 | 993 ± 1 | 55 ± 9 |
MS (g kg−1) | 100 ± 20 | 1.3 ± 0.1 | 18 ± 6 | 58 ± 5 | 0.2 ± 0.2 | 3.3 ± 0.3 |
VS/TS | 0.88 | 0.99 | 0.98 | 0.94 | 1.00 | 0.94 |
C (%) | 42.9 ± 0.2 | 20 * | 47.8 ± 0.5 | 41 ± 3 | 48 ± 1 | 51.3 ± 0.7 |
N (%) | 0.28 ± 0.04 | 46.6 * | 12.87 ± 0.07 | 14 ± 1 | 11.5 ± 0.2 | 4.36 ± 0.03 |
C/N | 153 ± 5 | 0.43 * | 3.71 ± 0.06 | 2.96 ± 0.01 | 4.1 ± 0.2 | 11.78 ± 0.09 |
Parameters | Posidonia oceanica |
---|---|
Physical Bio-Parameters | |
Average weight (g) | 9 ± 8 |
Average width (cm) | 4 ± 2 |
Average length (cm) | 5 ± 2 |
Average height (cm) | 3 ± 1 |
Biovolume (cm3) | 300 ± 200 |
Q1 (cm3) | 61 |
Q3 (cm3) | 450 |
Range (cm3) | 10–850 |
Mode (cm3) | 50 |
Elemental Analysis | |
C (g kg−1) | 429 ± 2 |
N (g kg−1) | 2.8 ± 0.4 |
B (g kg−1) | 3.0 ± 0.2 |
Na (g kg−1) | 17.9 ± 0.8 |
Mg (g kg−1) | 4.3 ± 0.2 |
Al (g kg−1) | 0.63 ± 0.03 |
K (g kg−1) | 1.0 ± 0.1 |
Ca (g kg−1) | 8 ± 1 |
p (ppm) | <LOD |
As (ppm) | 10.4 ± 0.4 |
Ti (ppm) | 12 ± 1 |
Cr (ppm) | 3 ± 1 |
Cu (ppm) | 3 ± 2 |
Co (ppm) | <LOD |
Mn (ppm) | <LOD |
Ni (ppm) | 0.5 ± 0.1 |
Fe (ppm) | 1.6 ± 0.1 |
Hg (ppm) | 2 ± 1 |
Pb (ppm) | 3 ± 2 |
Mo (ppb) | 310 ± 70 |
Zn (ppb) | <LOD |
Sn (ppb) | <LOD |
Sb (ppb) | <LOD |
P.o. | P.o.:Ur. | P.o.:Cas. | P.o.:Pep. | P.o.:Syn.Cas. | P.o.:R.s. | |
---|---|---|---|---|---|---|
TS (g kg−1) | 15 ± 5 a.b | 16 ± 2 b.c | 19 ± 1 b.c | 12 ± 5 a | 19.0 ± 0.6 c | 23.5 ± 0.6 d |
VS (g kg−1) | 8 ± 3 a.b | 11 ± 1 b.c | 12 ± 1 c | 8 ± 3 a | 12.4 ± 0.8 c | 15.6 ± 0.3 d |
MS (g kg−1) | 7 ± 2 a.b | 5 ± 1 a.c | 6.5 ± 0.6 a.b | 4 ± 2 c | 6.6 ± 0.4 a.b | 7.9 ± 0.6 b |
pH | 7.82 ± 0.07 a | 9.2 ± 0.2 b | 8.2 ± 0.1 c | 8.22 ± 0.03 c | 8.16 ± 0.05 c | 7.77 ± 0.08 a |
TA (mg CaCO3 kg−1) | 5590 ± 70 a | 15,100 ± 200 b | 7800 ± 200 d | 8960 ± 90 c | 6850 ± 30 e | 4500 ± 500 f |
CODs (mg O2 kg−1) | 2100 ± 500 a.d | 7700 ± 500 b | 1600 ± 500 a.d.e | 3100 ± 300 c | 1400 ± 400 e | 1500 ± 200 a.d.e |
TAN (mg N-NH4+ kg−1) | 990 ± 40 a | 4000 ± 200 b | 1830 ± 50 c | 2030 ± 60 c | 1600 ± 200 d | 970 ± 30 a |
BMPth (NL CH4 kg−1 VS) | 526.2 | 83.0 | 455.8 | 399.0 | 498.1 | 537.9 |
BMPexp (NL CH4 kg−1 VS) | 79 ± 3 a | 0 b | 420 ± 30 c | 389 ± 7 c | 380 ± 30 c | 194 ± 4 d |
BD (%) | 15 | 0 | 93 | 97 | 75 | 36 |
Substrate | Gmax (NL CH4 kg−1 VS) | k (days−1) | R2 | S.E.E. | Error (%) |
---|---|---|---|---|---|
P.o. | 82 ± 2 | 0.20 ± 0.01 | 0.9936 | 3.277 | 4.0 |
P.o.:Pep. | 388 ± 2 | 0.46 ± 0.01 | 0.9987 | 6.714 | 0.2 |
P.o.:Cas. | 414 ± 6 | 0.28 ± 0.01 | 0.9934 | 6.025 | 0.8 |
P.o.:Syn.Cas. | 377 ± 2 | 0.36 ± 0.01 | 0.9987 | 6.548 | 0.1 |
P.o.:R.s. | 184 ± 4 | 0.29 ± 0.02 | 0.9879 | 9.495 | 5.1 |
Substrate | Bmax (NL CH4 kg−1 VS) | Rmax (NL CH4(kg VS·d)−1) | λ (d) | R2 | S.E.E. | Error (%) |
---|---|---|---|---|---|---|
P.o. | 82 ± 1 | 16.8 ± 0.9 | 0.14 ± 0.01 | 0.9942 | 3.214 | 3.8 |
P.o.:Pep. | 387 ± 2 | 183 ± 5 | 0.03 ± 0.01 | 0.9987 | 6.673 | 0.5 |
P.o.:Cas. | 414 ± 6 | 117 ± 7 | 4.5·10−10 | 0.9935 | 6.489 | 0.8 |
P.o.:Syn.Cas. | 376 ± 2 | 140 ± 3 | 0.05 ± 0.01 | 0.9989 | 6.171 | 0.1 |
P.o.:R.s. | 184 ± 4 | 54 ± 4 | 1.2·10−9 | 0.9880 | 9.770 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Lama-Calvente, D.; Mancilla-Leytón, J.M.; Garrido-Murillo, I.; Rojas-Carrillo, J.; Borja, R.; Fernández-Rodríguez, M.J. Influence of Nitrogen Bioavailability on the Anaerobic Co-Digestion of the Aegagropiles of the Seagrass Posidonia oceanica with Different Nitrogen-Rich Substrates: Process Performance and Kinetic Analysis. Appl. Sci. 2025, 15, 2880. https://doi.org/10.3390/app15062880
de la Lama-Calvente D, Mancilla-Leytón JM, Garrido-Murillo I, Rojas-Carrillo J, Borja R, Fernández-Rodríguez MJ. Influence of Nitrogen Bioavailability on the Anaerobic Co-Digestion of the Aegagropiles of the Seagrass Posidonia oceanica with Different Nitrogen-Rich Substrates: Process Performance and Kinetic Analysis. Applied Sciences. 2025; 15(6):2880. https://doi.org/10.3390/app15062880
Chicago/Turabian Stylede la Lama-Calvente, David, Juan Manuel Mancilla-Leytón, Iván Garrido-Murillo, Javier Rojas-Carrillo, Rafael Borja, and María José Fernández-Rodríguez. 2025. "Influence of Nitrogen Bioavailability on the Anaerobic Co-Digestion of the Aegagropiles of the Seagrass Posidonia oceanica with Different Nitrogen-Rich Substrates: Process Performance and Kinetic Analysis" Applied Sciences 15, no. 6: 2880. https://doi.org/10.3390/app15062880
APA Stylede la Lama-Calvente, D., Mancilla-Leytón, J. M., Garrido-Murillo, I., Rojas-Carrillo, J., Borja, R., & Fernández-Rodríguez, M. J. (2025). Influence of Nitrogen Bioavailability on the Anaerobic Co-Digestion of the Aegagropiles of the Seagrass Posidonia oceanica with Different Nitrogen-Rich Substrates: Process Performance and Kinetic Analysis. Applied Sciences, 15(6), 2880. https://doi.org/10.3390/app15062880