Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Data
2.3. Laboratory Processing and Soil Salinity Measurement
2.4. Image Data Acquisition and Processing
2.4.1. Processing of Landsat 8 OLI Collection 2 Level-1
2.4.2. Processing of Landsat 8 OLI Collection 2 Level-2
2.5. Data Selection
2.6. Mathematical Transformation and Spectral Indicators Construction
2.7. Feature Variable Selection for Model Construction
2.8. Inversion Model Construction, Accuracy Verification, and Salinity Visualization
2.8.1. PLSR
2.8.2. RF
2.8.3. BPNN
2.8.4. Accuracy Verification
2.8.5. Visualization of Salinity Distribution
2.9. Methodology Workflow
3. Results
3.1. Data Level and Month Selection
3.2. The Result of Feature Variable Selection
3.3. Optimal Model Parameter Results
3.4. Accuracy Verification Results
3.5. Visualization of Salinity Distribution in the Yellow River Delta
4. Discussion
4.1. Level and Month Selection
4.2. Feature Variables Selection, Model Construction, and Variable Contribution to the Model
4.3. Comparisons with State-of-the-Art (SOTA), Other Models (This Study), and Performance, Across Different Months and Data Sets
4.3.1. Model Comparison with SOTA
4.3.2. Comparison with This Study’s Other Models
4.3.3. Random Forest Performance Across Different Months
4.3.4. Analysis of Performance Variations Across Training, Validation, and Test Sets
4.4. Recommendations for Agricultural Producers and Environmental Policymakers
4.4.1. Recommendations for Agricultural Producers
4.4.2. Recommendations for Environmental Policymakers
4.5. Limitations of the Study and Future Plans
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1: Summary pseudocode algorithm of this research. | |
1 | Algorithm: Soil Salinity Prediction |
2 | Input: |
3 | Spectral data from Landsat 8 OLI (band data) |
4 | Region of Interest (ROI) |
5 | Calibration data (soil salinity measurements) |
6 | Output: |
7 | Predicted soil salinity values |
8 | Visualized salt–alkali distribution map |
9 | |
10 | // Step 1: Data Preprocessing |
11 | Apply radiometric calibration and atmospheric correction to Landsat 8 OLI Level-1 |
12 | Apply scaling factors to Level-1 and Level-2 data |
13 | Extract band values (e.g., Band R) from the image data |
14 | |
15 | // Step 2: Data Transformation |
16 | For each band (B, G, R, NIR, SWIR1, SWIR2): |
17 | Perform mathematical transformations: |
18 | LOGE_Band = ln(Band) |
19 | RECI_Band = 1/Band |
20 | EXP_Band = exp(Band) |
21 | SQRT_Band = sqrt(Band) |
22 | DIFF1_Band = first difference of Band (along columns) |
23 | DIFF2_Band = second difference of Band (along columns) |
24 | Compute spectral indicators: |
25 | SI-T = R/NIR × 100 |
26 | NDVI = (NIR − R)/(NIR + R) |
27 | … (other spectral indicators) |
28 | Spectral_Variables = Original 7 bands + Transformed bands + Spectral indicators |
29 | |
30 | // Step 3: Feature Selection |
31 | PLSR_selected_features = [] |
32 | For each column in Spectral_Variables: |
33 | Calculate Pearson correlation between salinity and the column |
34 | If absolute correlation > 0.4: |
35 | Add column to PLSR_selected_features |
36 | |
37 | RF_selected_features = Spectral_Variables |
38 | BPNN_selected_features = Spectral_Variables |
39 | |
40 | // Step 4: Model Training and Evaluation |
41 | Split data into training (75%) and testing (25%) sets |
42 | |
43 | // PLSR |
44 | Create PLSR model |
45 | Define parameter grid for n_components (e.g., from 1 to 10) |
46 | Use grid search with cross-validation to find best PLSR model |
47 | For each n_components: |
48 | For each fold in cross-validation: |
49 | Train PLSR model on training data (of the current fold) |
50 | Calculate validation error (on the validation set of the current fold) |
51 | Select PLSR model with lowest average validation error across all folds |
52 | Calculate PLSR R-squared and other metrics on train, validation, test set |
53 | |
54 | // RF |
55 | Create random forest model |
56 | Define parameter grid for n_estimators (e.g., from 50 to 500) |
57 | Use grid search with cross-validation to find best RF model |
58 | For each n_estimators: |
59 | For each fold in cross-validation: |
60 | Train RF model on training data (of the current fold) |
61 | Calculate validation error (on the validation set of the current fold) |
62 | Select RF model with lowest average validation error across all folds |
63 | Calculate RF R-squared and other metrics on train, validation, test set |
64 | |
65 | // BPNN |
66 | Create BPNN model |
67 | Define network architecture (number of layers, activation functions) |
68 | Define training parameters (learning rate, batch size, number of epochs, optimizer) |
69 | Define a range of hyperparameters to tune (e.g., number of neurons, learning rate) |
70 | Use cross-validation to find the best BPNN model |
71 | For each combination of hyperparameters: |
72 | For each fold in cross-validation: |
73 | Train BPNN model on training data (of the current fold) |
74 | Evaluate BPNN model on validation data |
75 | Select BPNN model with best average performance on the validation set |
76 | Evaluate the best BPNN model: |
77 | Calculate BPNN R-squared and other metrics on train, validation, test set |
78 | |
79 | // Step 5: Visualization |
80 | Load best performing model (e.g., “model.pkl”) |
81 | Load Landsat 8 image (“image.tif”) |
82 | Calculate Bands, Spectral indicators, and Transformed variables in the Landsat 8 image |
83 | Predicting using the loaded model: Prediction_raster_values = model.predict(Data) |
84 | Soil_salinity_mapping = create_salinity_map(Prediction_raster_values) |
References
- Ruhollah, T.M.; Ayoubi, S.; Namazi, Z.; Malone, B.P.; Zolfaghari, A.A.; Sadrabadi, F.R. Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Res. Manag. 2016, 30, 49–64. [Google Scholar]
- Guo, B.; Zang, W.Q.; Luo, W.; Wen, Y.; Yang, F.; Han, B.M. Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat8 OLI image. Geomat. Nat. Hazards Risks 2020, 11, 288–300. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Liu, W.; Wang, J.; Zhao, M. Mapping coastal wetland soil salinity in different seasons using an improved comprehensive land surface factor system. Ecol. Indic. 2019, 107, 105517. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.B.; Wu, M.D.; Liu, X.L.; Wang, X.H.; Yang, J.S.; Zhou, D.; Zhang, X.L. Clonal integration promotes the growth of Phragmites australis populations in saline wetlands of the Yellow River Delta. Front. Plant Sci. 2023, 14, 1162923. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.X.; Wang, G.M.; Zhang, H.B.; Chen, H.P.; Ma, Q. Biochar and Nitrification Inhibitor (Dicyandiamide) Combination Had a Double-Win Effect on Saline-Alkali Soil Improvement and Soybean Production in the Yellow River Delta, China. Agronomy 2022, 12, 3154. [Google Scholar] [CrossRef]
- Wang, D.Y.; Chen, H.Y.; Wang, Z.R.; Ma, Y. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto Int. 2022, 37, 1274–1293. [Google Scholar] [CrossRef]
- Periasamy, S.; Ravi, K.P. A novel approach to quantify soil salinity by simulating the dielectric loss of SAR in three-dimensional density space. Remote Sens. Environ. 2020, 251, 112059. [Google Scholar] [CrossRef]
- Ma, Y.X.; Tashpolat, N. Current Status and Development Trend of Soil Salinity Monitoring Research in China. Sustainability 2023, 15, 5874. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Li, Y.S.; Chang, C.Y.; Wang, Z.R.; Zhao, G.X. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China. Ecol. Indic. 2023, 148, 110087. [Google Scholar] [CrossRef]
- Zhang, H.R.; Fu, X.; Zhang, Y.N.; Qi, Z.S.; Zhang, H.C.; Xu, Z.H. Mapping Multi-Depth Soil Salinity Using Remote Sensing-Enabled Machine Learning in the Yellow River Delta, China. Remote Sens. 2023, 15, 5640. [Google Scholar] [CrossRef]
- Xu, M.; Guo, B.; Zhang, R. A Novel Approach to Detecting the Salinization of the Yellow River Delta Using a Kernel Normalized Difference Vegetation Index and a Feature Space Model. Sustainability 2024, 16, 2560. [Google Scholar] [CrossRef]
- Jiang, X.F.; Duan, H.C.; Liao, J.; Guo, P.L.; Huang, C.H.; Xue, X. Estimation of Soil Salinization by Machine Learning Algorithms in Different Arid Regions of Northwest China. Remote Sens. 2022, 14, 347. [Google Scholar] [CrossRef]
- Kasim, N.; Maihemuti, B.; Sawut, R.; Abliz, A.; Dong, C.; Abdumutallip, M. Quantitative Estimation of Soil Salinization in an Arid Region of the Keriya Oasis Based on Multidimensional Modeling. Water 2020, 12, 880. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, X.M. Comparison on quantitative inversion of characteristic ions in salinized soils with hyperspectral based on support vector regression and partial least squares regression. Eur. J. Remote Sens. 2019, 53, 340–348. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, X.P.; Zhang, J.H.; Shang, X.D.; Chen, Y.Y.; Feng, Y.P.; Tian, B.B. Soil Salinity Inversion in Yellow River Delta by Regularized Extreme Learning Machine Based on ICOA. Remote Sens. 2024, 16, 1565. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, H.; Lai, J.; Wang, C.; Liu, Z.; Sun, Z.; Hou, R. New Approach of High-quality Agricultural Development in the Yellow River Delta. Bull. Chin. Acad. Sci. 2022, 35, 145–153. [Google Scholar]
- Wu, Y.N.; Dai, L.Y.; Wang, Y.; Xie, L.M.; Zhao, S.Q.; Liu, Y.; Zhang, M.X.; Zhang, Z.M. Coexistence mechanisms of Tamarix chinensis and Suaeda salsa in the Yellow River Delta, China. Environ. Sci. Pollut. Res. 2020, 27, 26172–26181. [Google Scholar] [CrossRef]
- Wang, D.; Tang, B.H.; Li, Z.L. Evaluation of five atmospheric correction algorithms for multispectral remote sensing data over plateau lake. Ecol. Inform. 2024, 82, 102666. [Google Scholar] [CrossRef]
- Sayler, K. Landsat 8–9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide; U.S. Geological Survey: Asheville, NC, USA, 2022; pp. 25–36.
- Tripathi, N.K.; Rai, B.K.; Dwivedi, P. Spatial modeling of soil alkalinity in GIS environment using IRS data. In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997; pp. 81–86. [Google Scholar]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indicators derived from IKONOS high spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 30, 1–8. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indicators and modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indicators for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–467. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; De Pauw, E. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg. 2014, 2, 21–31. [Google Scholar] [CrossRef]
- Jiang, H.; Ding, J.; Tashpolat, T.; Zhao, R.; Zhang, F. Extracting salinized soil information in arid areas using ETM+ data. Acta Pedol. Sin. 2008, 45, 222–228. [Google Scholar]
- Chen, H.; Zhao, G.; Chen, J.; Wang, R.; Gao, M. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Trans. Chin. Soc. Agric. Eng. 2015, 31, 107–114. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indicators. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Alhammad, M.S.; Glenn, E.P. Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. Int. J. Remote Sens. 2008, 29, 1745–1765. [Google Scholar] [CrossRef]
- Ramole, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkonig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Whelan, M. In Situ Measurements and Remotely Sensed Retrievals of Soil Salinity in Coastal Wetlands: A Review. Remote Sens. 2020, 12, 4595. [Google Scholar]
- Hoa, P.V.; Giang, N.V.; Binh, N.A.; Hai, L.V.H.; Pham, T.D.; Hasanlou, M.; Bui, D.T. Soil salinity mapping using SAR Sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sens. 2019, 11, 128. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.T.; Latif, A.; Johnson, V.C. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indicators. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by backpropagating errors. Nature. 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Golestani, M.; Chahfarokhi, Z.M.; Esfandiarpour-Boroujeni, I.; Shirani, H. Evaluating the spatiotemporal variations of soil salinity in Sirjan Playa, Iran using Sentinel-2A and Landsat-8 OLI imagery. Catena 2023, 231, 107375. [Google Scholar] [CrossRef]
- Pinto, C.T.; Jing, X.; Leigh, L. Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using In Situ Measurements. Remote Sens. 2020, 12, 2597. [Google Scholar] [CrossRef]
- Jie, L.; Tingting, Z.; Yun, S.; Zhengshan, J. Comparing Machine Learning Algorithms for Soil Salinity Mapping Using Topographic Factors and Sentinel-1/2 Data: A Case Study in the Yellow River Delta of China. Remote Sens. 2023, 15, 2332. [Google Scholar]
- Cheng, T.; Zhang, J.; Zhang, S.; Bai, Y.; Wang, J.; Li, S.; Javid, T.; Meng, X.; Sharma, T.P.P. Monitoring soil salinization and its spatiotemporal variation at different depths across the Yellow River Delta based on remote sensing data with multi-parameter optimization. Environ. Sci. Pollut. Res. 2022, 29, 24269–24285. [Google Scholar] [CrossRef] [PubMed]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indicators and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Yu, H.; Liu, M.Y.; Du, B.J.; Wang, Z.M.; Hu, L.J.; Zhang, B. Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China. Sensors 2018, 18, 1048. [Google Scholar] [CrossRef]
Statistics Properties | Mean | Standard Deviation | Range | Minimum | Maximum | Coefficient of Variation |
---|---|---|---|---|---|---|
Values | 4.17 | 7.35 | 36.08 | 0.02 | 36.10 | 1.76 |
Bands | Wavelength (µm) | Res (m) |
---|---|---|
Band 1—Coastal aerosol | 0.43–0.45 | 30 |
Band 2—BLUE | 0.45–0.51 | 30 |
Band 3—GRENN | 0.53–0.59 | 30 |
Band 4—RED | 0.64–0.67 | 30 |
Band 5—Near Infrared (NIR) | 0.85–0.88 | 30 |
Band 6—SWIR1 | 1.57–1.65 | 30 |
Band 7—SWIR2 | 2.11–2.29 | 30 |
Collection 2 Level-1 SR | Collection 2 Level-2 SR | |
---|---|---|
Fill Value | −9999 | 0 |
Scaling Factor | 0.0001 | 0.0000275 ± 0.2 |
Data Type | Signed 16 bit integer | Unsigned 16 bit integer |
Valid Range | 0–10,000 | 1–65,455 |
Spectral Indicators | Formula | References |
---|---|---|
SI-T [Salinity Index] | [21] | |
NDSI [Normalized Difference Salinity Index] | R − NIR/R + NIR | [22] |
SI1 [Salinity Index1] | [22] | |
SI2 [Salinity Index1] | [22] | |
SI3 [Salinity Index1] | [22] | |
S1 [Salinity Index] | [23] | |
S2 [Salinity Index] | [23] | |
S3 [Salinity Index] | [23] | |
S5 [Salinity Index] | [23] | |
S6 [Salinity Index] | [23] | |
SAIO [Salinity Ratio Index] | [24] | |
CLEX [Clay Index] | [24] | |
CYEX [Gypsum Index] | [24] | |
BRI [Brightness Index] | [24] | |
CAEX [Carbonate Index] | [24] | |
SR [Simple Ratio Vegetation Index] | [25] | |
CRSI [Canopy Response Salinity Index] | [26] | |
NDVI [Normalized Difference Infrared Index] | [22] | |
EVI [Enhanced Vegetation Index] | [27] | |
DVI [Difference Vegetation Index] | [28] | |
MSAVI [Modified Soil Adjusted Vegetable Index] | [29] | |
ARVI [Atmospherically Resistant Vegetation Index] | [29] | |
GDVI [Generalized Difference Vegetation Index] | [30] | |
EVI2 [Two-band Enhanced Vegetation Index] | [30] | |
ENDVI [Extended NDVI] | [31] | |
EEVI [Extended Enhanced Vegetation Index] | [32] | |
SAVI [Soil Adjusted Vegetation Index] | [32] | |
RVI [Ratio Vegetation Index] | [33] | |
SRSI [Salinization Remote Sensing Index] | [34] |
Bands | 1.15_L1 | 1.15_L2 | 2.16_L1 | 2.16_L2 | 3.03_L1 | 3.03_L2 | 8.26_L1 | 8.26_L2 | 12.16_L1 | 12.16_L2 |
---|---|---|---|---|---|---|---|---|---|---|
CO | 0.32 ** | 0.16 | −0.07 | −0.1 | 0.08 | 0.03 | 0.42 ** | 0.42 ** | 0.13 | 0.06 |
B | 0.29 ** | 0.2 | −0.08 | −0.1 | 0.08 | 0.04 | 0.43 ** | 0.41 ** | 0.13 | 0.08 |
G | 0.27 ** | 0.23 ** | −0.07 | −0.09 | 0.1 | 0.07 | 0.43 ** | 0.43 ** | 0.17 | 0.13 |
R | 0.21 | 0.18 | −0.07 | −0.09 | 0.02 | 0.02 | 0.47 ** | 0.46 ** | 0.14 | 0.1 |
NIR | −0.07 | −0.09 | −0.11 | −0.13 | −0.2 | −0.2 | −0.31 ** | −0.33 ** | −0.18 | −0.2 |
SWIR1 | −0.13 | −0.14 | 0.07 | 0.06 | −0.19 | −0.2 | 0.05 | 0.04 | −0.16 | −0.17 |
SWIR2 | −0.08 | −0.09 | 0.12 | 0.1 | −0.18 | −0.19 | 0.33 ** | 0.32 ** | −0.08 | −0.08 |
DIFF1NIR: −0.43 ** | DIFF2NIR: −0.43 ** | SI-T:0.45 ** |
NDSI:0.44 ** | SAIO: 0.44 ** | SR: −0.43 ** |
CRSI: −0.41 ** | NDVI: −0.44 ** | EVI: −0.43 ** |
DVI: −0.43 ** | MSAVI: −0.43 ** | ARVI: −0.41 ** |
GDVI: −0.44 ** | EVI2: −0.43 ** | ENDVI: −0.42 ** |
SAVI: −0.44 ** | RVI: −0.43 | SRSI: 0.45 ** |
G: 0.45 ** | R: 0.48 ** | EXP_G: 0.45 ** |
EXP_R: 0.48 ** | SQRT_R: 0.46 ** | SI−T: 0.45 ** |
NDSDI: 0.45 ** | SI1: 0.47 ** | SI3: 0.47 ** |
S3: 0.47 ** | S5: 0.45 ** | SAIO: 0.45 ** |
BRI: 0.47 ** | NDVI: −0.45 ** | SRSI: 0.45 ** |
CO: 0.43 ** | B: 0.44 ** | DIFF1R: 0.43 ** |
EXP_CO: 0.43 ** | EXP_B: 0.44 ** | LOGE_R: 0.42 ** |
SQRT_CO: 0.42 ** | SQRT_B: 0.43 ** | SQRT_G: 0.43 ** |
CRSI: −0.43 ** | EVI: −0.42 ** | ARVI: −0.44 ** |
GDVI: −0.44 ** | ENDVI: −0.43 ** | SAVI: −0.43 ** |
Soil Salinity Class (g/kg) | Pixels Number | Surface Area (km2) | Percentage |
---|---|---|---|
Non-Saline [0–2] | 289,383 | 261 | 0.16 |
Slightly Saline [2–4] | 420,814 | 379 | 0.23 |
Moderately Saline [4–6] | 213,716 | 192 | 0.12 |
Strongly Saline [6–10] | 475,798 | 428 | 0.26 |
Extremely Saline [10+] | 436,527 | 392 | 0.23 |
SUM | 1,836,238 | 1652 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, G.; Guan, Y.; Zhang, X.; Yang, Y.; Li, Y.; Liu, X.; Rong, Z.; Ju, M. Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta. Appl. Sci. 2025, 15, 2747. https://doi.org/10.3390/app15052747
Ni G, Guan Y, Zhang X, Yang Y, Li Y, Liu X, Rong Z, Ju M. Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta. Applied Sciences. 2025; 15(5):2747. https://doi.org/10.3390/app15052747
Chicago/Turabian StyleNi, Guosheng, Yang Guan, Xiaoguang Zhang, Yi Yang, Yu Li, Xinwei Liu, Ziguo Rong, and Min Ju. 2025. "Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta" Applied Sciences 15, no. 5: 2747. https://doi.org/10.3390/app15052747
APA StyleNi, G., Guan, Y., Zhang, X., Yang, Y., Li, Y., Liu, X., Rong, Z., & Ju, M. (2025). Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta. Applied Sciences, 15(5), 2747. https://doi.org/10.3390/app15052747