Dietary Ocimum gratissimum Essential Oil Improves the Antioxidant Status and Maintains the Performance of Macrobrachium rosenbergii Juveniles
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Collection and Essential Oil Extraction and Characterization
2.2. Experimental Diets
2.3. Experimental Design
2.4. Prawn Performance
2.5. Antioxidant Enzymes and Detoxification Activities in the Hepatopancreas
2.6. Prawn Body Proximate Composition
2.7. Statistical Analysis
3. Results
3.1. Prawn Performance
3.2. Antioxidant Status
3.3. Prawn Body Proximate Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in Action: Rome, Italy, 2020. [Google Scholar]
- Frozza, A.; Fiorini, A.; Vendruscolo, E.C.G.; Rosado, F.R.; Konrad, D.; Rodrigues, M.C.G.; Ballester, E.L.C. Probiotics in the rearing of freshwater prawn Macrobrachium rosenbergii (de Man, 1879) in a biofloc system. Aquac. Res. 2021, 52, 4269–4277. [Google Scholar] [CrossRef]
- Chen, W.W.; Romano, N.; Ebrahimi, M.; Natrah, I. The effects of dietary fructooligosaccharide on growth, intestinal short chain fatty acids level and hepatopancreatic condition of the giant freshwater prawn (Macrobrachium rosenbergii) post-larvae. Aquaculture 2017, 469, 95–101. [Google Scholar] [CrossRef]
- Ng, W.-K.; Lim, C.-L.; Romano, N.; Kua, B.-C. Dietary short-chain organic acids enhanced resistance to bacterial infection and hepatopancreatic structural integrity of the giant freshwater prawn, Macrobrachium rosenbergii. Int. Aquat. Res. 2017, 9, 293–302. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Pourmozaffar, S.; Adeshina, I.; Vayghan, A.H.; Reverter, M. Effect of garlic (Allium sativum) extract on growth, enzymological and biochemical responses and immune-related gene expressions in giant freshwater prawn (Macrobrachium rosenbergii). J. Anim. Physiol. Anim. Nutr. 2022, 106, 947–956. [Google Scholar] [CrossRef]
- Naksing, T.; Rattanavichai, W.; Teeka, J.; Kaewpa, D.; Borthong, J.; Areesirisuk, A. Biological activities and potential of organic banana (Musa acuminata) peel extract in enhancing the immunity of giant freshwater prawn (Macrobrachium rosenbergii). Aquac. Res. 2022, 53, 2645–2656. [Google Scholar] [CrossRef]
- Liu, M.; Sun, C.; Xu, P.; Liu, B.; Zheng, X.; Liu, B.; Zhou, Q. Effects of dietary tea tree (Melaleuca alternifolia) oil and feeding patterns on the zootechnical performance and nonspecific immune response of the giant freshwater prawn (Macrobrachium rosenbergii). J. World Aquac. Soc. 2022, 53, 542–557. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Yilmaz, S.; Abdel-Latif, H.M.R.; Alagawany, M.; Kari, Z.A.; Razab, M.K.A.A.; Hamid, N.K.A.; Moonmanee, T.; van Doan, H. Exploring the Roles of Dietary Herbal Essential Oils in Aquaculture: A Review. Animals 2022, 12, 823. [Google Scholar] [CrossRef]
- Silva, R.C.E.; Costa, J.S.D.; Figueiredo, R.O.D.; Setzer, W.N.; Silva, J.K.R.D.; Maia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R. Biochemistry of monoterpenes and sesquiterpenes of the essential oils. In Herbs, Spices, and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology; Food Product Press: New York, NY, USA, 1986; Volume 1, pp. 81–133. [Google Scholar]
- de Souza Valente, C.; Coates, C.J.; Cagol, L.; Bombardelli, R.A.; Becker, A.G.; Schmidt, D.; Heinzmann, B.M.; Vaz-dos-Santos, A.M.; Baldisserotto, B.; Ballester, E.L.C. Antioxidant status and performance of Macrobrachium rosenbergii juveniles fed diets containing non-nutritive Aloysia triphylla essential oil. Aquac. Int. 2024, 32, 7201–7214. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.I.; Taktak, N.E.M. Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J. Drug Deliv. Sci. Technol. 2021, 65, 102732. [Google Scholar] [CrossRef]
- Bandeira Junior, G.; Bianchini, A.E.; de Freitas Souza, C.; Descovi, S.N.; da Silva Fernandes, L.; de Lima Silva, L.; Cargnelutti, J.F.; Baldisserotto, B. The Use of Cinnamon Essential Oils in Aquaculture: Antibacterial, Anesthetic, Growth-Promoting, and Antioxidant Effects. Fishes 2022, 7, 133. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef]
- Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int. 2014, 22, 1079–1091. [Google Scholar] [CrossRef]
- Yousefi, M.; Ghafarifarsani, H.; Hoseini, S.M.; Hoseinifar, S.H.; Abtahi, B.; Vatnikov, Y.A.; Kulikov, E.V.; van Doan, H. Effects of dietary thyme essential oil and prebiotic administration on rainbow trout (Oncorhynchus mykiss) welfare and performance. Fish Shellfish Immunol. 2022, 120, 737–744. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, C.; Pillai, D. Dietary coriander (Coriandrum sativum L.) oil improves antioxidant and anti-inflammatory activity, innate immune responses and resistance to Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2023, 132, 108486. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Metwally, A.E.-S.; Elkomy, A.H.; Gewaily, M.S.; Abdo, S.E.; Abdel-Razek, M.A.S.; Soliman, A.A.; Amer, A.A.; Abdel-Razik, N.I.; Abdel-Latif, H.M.R.; et al. The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish Immunol. 2020, 102, 316–325. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.A.; Martins, M.A.; Santo, F.E.; Oliveira, F.C.; Chaves, F.C.M.; Chagas, E.C.; Martins, M.L.; de Campos, C.M. Essential oils of Ocimum gratissimum and Zingiber officinale as anesthetics for the South American catfish Pseudoplatystoma reticulatum. Aquaculture 2020, 528, 735595. [Google Scholar] [CrossRef]
- de Souza Valente, C.; Santos, G.D.; Becker, A.G.; Heinzmann, B.M.; Caron, B.O.; Baldisserotto, B.; Ballester, E.L.C. Anaesthetic effect of clove basil (Ocimum gratissimum L.) essential oil on the giant river prawn (Macrobrachium rosenbergii, De Man 1879) exposed to different water pHs. Aquac. Int. 2024, 32, 1493–1505. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.W.; Liu, L.L.; Cao, Y.C.; Zhu, H. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [Google Scholar] [CrossRef]
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; Andrade, E.H.D.A.; Oliveira, M.S.D. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- Hasdemir, Ö.; Kesbiç, O.S.; Cravana, C.; Fazio, F. Antioxidant Performance of Borago officinalis Leaf Essential Oil and Protective Effect on Thermal Oxidation of Fish Oil. Sustainability 2023, 15, 10227. [Google Scholar] [CrossRef]
- Cagol, L.; Baldisserotto, B.; Becker, A.G.; Souza, C.D.F.; Heinzmann, B.M.; Caron, B.O.; Leone, F.A.; Santos, L.D.D.; Ballester, E.L.C. Essential oil of Lippia alba in the diet of Macrobrachium rosenbergii: Effects on antioxidant enzymes and growth parameters. Aquac. Res. 2020, 51, 2243–2251. [Google Scholar] [CrossRef]
- de Almeida, E.T.; Correia, E.S.; Nascimento, C.H.D.; de Souza Bezerra, R.; Cahu, T.; Chung, S.; Copatti, C.E.; Ribeiro, K. Macrobrachium rosenbergii fed with essential oil from Lippia alba in the diet in low and high stocking density. Aquac. Res. 2022, 53, 4577–4587. [Google Scholar] [CrossRef]
- He, W.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol. 2017, 70, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Sheikh Asadi, M.; Gharaei, A.; Harijani, J.M.; Arshadi, A. A Comparison between dietary effects of Cuminum cyminum essential oil and Cuminum cyminum essential oil, loaded with iron nanoparticles, on growth performance, immunity and antioxidant indicators of white leg shrimp (Litopenaeus vannamei). Aquac. Nutr. 2018, 24, 1466–1473. [Google Scholar] [CrossRef]
- Soumanou, M.M.; Adjou, E.S. Chapter 87-Sweet Fennel (Ocimum gratissimum) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 765–773. [Google Scholar]
- Prabhu, K.; Lobo, R.; Shirwaikar, A.; Shirwaikar, A. Ocimum gratissimum: A review of its chemical, pharmacological and ethnomedicinal properties. Open Complement. Med. J. 2009, 1, 1–15. [Google Scholar] [CrossRef]
- Ugbogu, O.C.; Emmanuel, O.; Agi, G.O.; Ibe, C.; Ekweogu, C.N.; Ude, V.C.; Uche, M.E.; Nnanna, R.O.; Ugbogu, E.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon 2021, 7, e08404. [Google Scholar] [CrossRef]
- Bandeira, G., Jr.; Pês, T.S.; Saccol, E.M.; Sutili, F.J.; Rossi, W., Jr.; Murari, A.L.; Heinzmann, B.M.; Pavanato, M.A.; de Vargas, A.C.; Silva, L.D.L. Potential uses of Ocimum gratissimum and Hesperozygis ringens essential oils in aquaculture. Ind. Crops Prod. 2017, 97, 484–491. [Google Scholar] [CrossRef]
- de Lima Boijink, C.; Queiroz, C.A.; Chagas, E.C.; Chaves, F.C.M.; Inoue, L.A.K.A. Anesthetic and anthelminthic effects of clove basil (Ocimum gratissimum) essential oil for tambaqui (Colossoma macropomum). Aquaculture 2016, 457, 24–28. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Souza, C.F.; Ferreira, A.L.; Favero, G.C.; Baldissera, M.D.; Heinzmann, B.M.; Baldisserotto, B.; Luz, R.K. Essential oil of Ocimum gratissimum (Linnaeus, 1753) as anesthetic for Lophiosilurus alexandri: Induction, recovery, hematology, biochemistry and oxidative stress. Aquaculture 2020, 529, 735676. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Adeshina, I.; Emikpe, B.O.; Jenyo-Oni, A.; Ajani, E.K.; Tiamiyu, L.O. Effect of dietary clove basil, Ocimum gratissimum, leaves extract on healing of artificially wounded African catfish, Clarias gariepinus (B.), juveniles. J. Appl. Aquac. 2019, 31, 289–300. [Google Scholar] [CrossRef]
- Becker, A.J.; Vaz, L.J.; Garcia, L.D.O.; Wasielesky, W., Jr.; Heinzmann, B.M.; Baldisserotto, B. Anesthetic potential of different essential oils for two shrimp species, Farfantepenaeus paulensis and Litopenaeus vannamei (Decapoda, Crustacea). Ciência Rural 2021, 51, e20200793. [Google Scholar] [CrossRef]
- de Souza Valente, C.; Mendes, A.F.; Ferreira, C.H.D.N.; Baldisserotto, B.; Heinzmann, B.M.; Vaz-dos-Santos, A.M.; Ballester, E.L.C. Anaesthetic Effect of Clove Basil (Ocimum gratissimum) Essential Oil on Macrobrachium rosenbergii Post-Larvae. Aquac. J. 2024, 4, 192–202. [Google Scholar] [CrossRef]
- Alvarenga, J.P.; Silva, R.R.; Salgado, O.G.G.; Júnior, P.C.S.; Pavan, J.P.S.; Ávila, R.G.; Camargo, K.C.; Ferraz, V.; Cardoso, M.D.G.; Alvarenga, A.A. Variations in essential oil production and antioxidant system of Ocimum gratissimum after elicitation. J. Appl. Res. Med. Aromat. Plants 2022, 26, 100354. [Google Scholar] [CrossRef]
- Chainy, G.B.N.; Paital, B.; Dandapat, J. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species. Scientifica 2016, 2016, 6126570. [Google Scholar] [CrossRef]
- EP. European Pharmacopoeia, 5th ed.; European Department for the Quality of Medicines: Strasbourg, France, 2005. [Google Scholar]
- Abdel-Tawwab, M.; Abdel-Razek, N.; Tahoun, A.-A.; Awad, S.M.; Ahmed, M. Effects of dietary supplementation of chamomile oil on Indian shrimp (Penaeus indicus) performance, antioxidant, innate immunity, and resistance to Vibrio parahaemolyticus infection. Aquaculture 2022, 552, 738045. [Google Scholar] [CrossRef]
- Hoa, T.T.T.; Fagnon, M.S.; Thy, D.T.M.; Chabrillat, T.; Trung, N.B.; Kerros, S. Growth performance and disease resistance against Vibrio parahaemolyticus of whiteleg shrimp (Litopenaeus vannamei) fed essential oil blend (Phyto AquaBiotic). Animals 2023, 13, 3320. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011; p. 392. [Google Scholar]
- Coyle, S.D.; Alston, D.E.; Sampaio, C.M.S. Nursery Systems and Management. In Freshwater Prawns; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 108–126. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: New York, NY, USA, 1984; pp. 121–126. [Google Scholar]
- Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Wendel, A. Glutathione peroxidase. In Methods in Enzymology; Academic Press: New York, NY, USA, 1981; pp. 325–333. [Google Scholar]
- Bastolla, C.L.V.; Guerreiro, F.C.; Saldaña-Serrano, M.; Gomes, C.H.A.M.; Lima, D.; Rutkoski, C.F.; Mattos, J.J.; Dias, V.H.V.; Righetti, B.P.H.; Ferreira, C.P.; et al. Emerging and legacy contaminants on the Brazilian southern coast (Santa Catarina): A multi-biomarker approach in oysters Crassostrea gasar (Adanson, 1757). Sci. Total Environ. 2024, 925, 171679. [Google Scholar] [CrossRef]
- Mannervik, B. Measurement of Glutathione Reductase Activity. Curr. Protoc. Toxicol. 1999, 00, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Fleischner, G.; Gatmaitan, Z.; Arias, I.M.; Jakoby, W.B. The Identity of Glutathione -S-Transferase B with Ligandin, a Major Binding Protein of Liver. Proc. Natl. Acad. Sci. USA 1974, 71, 3879–3882. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Pérez-Ceballos, R.; Moulatlet, G.M.; Rodríguez-Santiago, M.A.; Dzul-Caamal, R.; Mora, A.; Suárez-Mozo, N.Y.; Abessa, D.M.; Zaldívar-Jiménez, A. Application of ecotoxicological tools to evaluate the quality status of mangroves under restoration in the Yucatán Peninsula, Mexico. Mar. Pollut. Bull. 2024, 203, 116386. [Google Scholar] [CrossRef]
- Mensah, P.K.; Palmer, C.G.; Muller, W.J. Lipid peroxidation in the freshwater shrimp Caridina nilotica as a biomarker of Roundup® herbicide pollution of freshwater systems in South Africa. Water Sci. Technol. 2012, 65, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, E.A.; Bainy, A.C.D.; de Melo Loureiro, A.P.; Martinez, G.R.; Miyamoto, S.; Onuki, J.; Barbosa, L.F.; Garcia, C.C.M.; Prado, F.M.; Ronsein, G.E. Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 588–600. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Chemist, A.O.A., Ed.; AOAC International: Gaitherburg, MD, USA, 2005. [Google Scholar]
- Ferreira, A.L.; Favero, G.C.; Boaventura, T.P.; de Freitas Souza, C.; Ferreira, N.S.; Descovi, S.N.; Baldisserotto, B.; Heinzmann, B.M.; Luz, R.K. Essential oil of Ocimum gratissimum (Linnaeus, 1753): Efficacy for anesthesia and transport of Oreochromis niloticus. Fish Physiol. Biochem. 2021, 47, 135–152. [Google Scholar] [CrossRef]
- Acar, Ü.; Kesbiç, O.S.; Yılmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [Google Scholar] [CrossRef]
- de Moraes França Ferreira, P.; da Silva Nascimento, L.; Dias, D.C.; da Veiga Moreira, D.M.; Salaro, A.L.; de Freitas, M.B.D.; Carneiro, A.P.S.; Zuanon, J.A.S. Essential Oregano Oil as a Growth Promoter for the Yellowtail tetra, Astyanax altiparanae. J. World Aquac. Soc. 2014, 45, 28–34. [Google Scholar] [CrossRef]
- Baba, E.; Acar, Ü.; Öntaş, C.; Kesbiç, O.S.; Yılmaz, S. Evaluation of Citrus limon peels essential oil on growth performance, immune response of Mozambique tilapia Oreochromis mossambicus challenged with Edwardsiella tarda. Aquaculture 2016, 465, 13–18. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Haghjou, M.; Nematollahi, A.; Goudarzian, F. Effects of rosemary essential oil on growth performance and hematological parameters of young great sturgeon (Huso huso). Aquaculture 2020, 521, 734909. [Google Scholar] [CrossRef]
- Janet, H.; Brown, M.B.N.; Ismael, D. Biology. In Freshwater Prawns: Biology and Farming; New, M.B., Valenti, W.C., Tidwell, J.H., D’Abramo, L.R., Kutty, M.N., Eds.; Wiley-Blackwell: Chichester, UK, 2010; pp. 18–39. [Google Scholar]
- Vickery, R.; Hollowell, K.; Hughes, M. Why have long antennae? Exploring the function of antennal contact in snapping shrimp. Mar. Freshw. Behav. Physiol. 2012, 45, 161–176. [Google Scholar] [CrossRef]
- Negrini, C.; Ferreira, C.H.D.N.; Kracizy, R.O.; Ferreira, R.L.; Costa, L.; Mauerwerk, M.T.; Retcheski, M.C.; Cazarolli, L.H.; Boscolo, W.R.; Cupertino Ballester, E.L. Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase. Fishes 2024, 9, 75. [Google Scholar] [CrossRef]
- Wilke, T.; Bendag, S.; Barth, A.; Reinold, T.; Schubert, P. Individual Shrimp Rearing Increases the Power of Experimental Trials. Aquac. J. 2025, 5, 2. [Google Scholar] [CrossRef]
- Valerie, J.; Smith, C.R.; Dyrynda, E.A. The shrimp immune system. In The Shrimp Book; Alday-Sanz, V., Ed.; Nottingham University Press: Nottingham, UK, 2014; pp. 89–148. [Google Scholar]
- Wang, D.; Li, F.; Chi, Y.; Xiang, J. Potential relationship among three antioxidant enzymes in eliminating hydrogen peroxide in penaeid shrimp. Cell Stress Chaperones 2012, 17, 423–433. [Google Scholar] [CrossRef]
- Livingstone, D.R. Contaminant-stimulated Reactive Oxygen Species Production and Oxidative Damage in Aquatic Organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Vazquez, L.; Alpuche, J.; Maldonado, G.; Agundis, C.; Pereyra-Morales, A.; Zenteno, E. Review: Immunity mechanisms in crustaceans. Innate Immun. 2009, 15, 179–188. [Google Scholar] [CrossRef]
- Conneely, E.-A.; Coates, C.J. Meta-analytic assessment of physiological markers for decapod crustacean welfare. Fish Fish. 2024, 25, 134–150. [Google Scholar] [CrossRef]
- Coates, C.J.; Söderhäll, K. The stress–immunity axis in shellfish. J. Invertebr. Pathol. 2021, 186, 107492. [Google Scholar] [CrossRef]
- Albalat, A.; Zacarias, S.; Coates, C.J.; Neil, D.M.; Planellas, S.R. Welfare in farmed decapod crustaceans, with particular reference to Penaeus vannamei. Front. Mar. Sci. 2022, 9, 886024. [Google Scholar] [CrossRef]
- Kumaresan, V.; Palanisamy, R.; Pasupuleti, M.; Arockiaraj, J. Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. Rev. Aquac. 2017, 9, 283–307. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D.A. Chapter Fiv -The antioxidant glutathione. In Vitamins and Hormones; Litwack, G., Ed.; Academic Press: New York, NY, USA, 2023; pp. 109–141. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- d’Avila Farias, M.; Oliveira, P.S.; Dutra, F.S.P.; Fernandes, T.J.; de Pereira, C.M.; de Oliveira, S.Q.; Stefanello, F.M.; Lencina, C.L.; Barschak, A.G. Eugenol derivatives as potential anti-oxidants: Is phenolic hydroxyl necessary to obtain an effect? J. Pharm. Pharmacol. 2014, 66, 733–746. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant Activity of Eugenol: A Structure–Activity Relationship Study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef]
- Joshi, R.K. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of the Essential Oils of Ocimum gratissimum, O. Sanctum and their Major Constituents. Indian J. Pharm. Sci. 2013, 75, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Rifkind, J.M.; Boindala, S.; Nakka, L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol. Biol. 2010, 610, 165–180. [Google Scholar]
- Fujisawa, S.; Atsumi, T.; Kadoma, Y.; Sakagami, H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 2002, 177, 39–54. [Google Scholar] [CrossRef]
- Sary, C.; Carbonera, F.; Silva, M.C.D.; Oliveira, M.; Lewandowski, V.; Todesco, H.; Visentainer, J.V.; Prado, I.N.D.; Ribeiro, R.P. Effect of clove (Eugenia caryophyllus) and cinnamon (Cinnamomum zeylanicum) essential oils in Nile tilapia diets on performance, antioxidant power and lipid oxidation in fillets. Aquac. Res. 2019, 50, 673–679. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Hoseinifar, S.H.; Javahery, S.; van Doan, H. Effects of dietary vitamin C, thyme essential oil, and quercetin on the immunological and antioxidant status of common carp (Cyprinus carpio). Aquaculture 2022, 553, 738053. [Google Scholar] [CrossRef]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Gushiken, L.F.S.; Beserra, F.P.; Hussni, M.F.; Gonzaga, M.T.; Ribeiro, V.P.; de Souza, P.F.; Campos, J.C.L.; Massaro, T.N.C.; Hussni, C.A.; Takahira, R.K.; et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxidative Med. Cell. Longev. 2022, 2022, 9004014. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Grando, T.H.; Stefani, L.M.; Monteiro, S.G. β-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chem.-Biol. Interact. 2017, 270, 9–14. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Grando, T.H.; Doleski, P.H.; Boligon, A.A.; Stefani, L.M.; Monteiro, S.G. Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Yovas, A.; Stanely, S.P.; Issac, R.; Ponnian, S.M.P. β-caryophyllene blocks reactive oxygen species-mediated hyperlipidemia in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol. 2023, 960, 176102. [Google Scholar] [CrossRef]
- Türkez, H.; Çelik, K.; Toğar, B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology 2014, 66, 597–603. [Google Scholar] [CrossRef]
- HU, Y.; Tan, B.; Mai, K.; Ai, Q.; Zheng, S.; Cheng, K. Growth and body composition of juvenile white shrimp, Litopenaeus vannamei, fed different ratios of dietary protein to energy. Aquac. Nutr. 2008, 14, 499–506. [Google Scholar] [CrossRef]
- Yarnpakdee, S.; Benjakul, S.; Penjamras, P.; Kristinsson, H.G. Chemical compositions and muddy flavour/odour of protein hydrolysate from Nile tilapia and broadhead catfish mince and protein isolate. Food Chem. 2014, 142, 210–216. [Google Scholar] [CrossRef]
- Li, E.; Chen, L.; Zeng, C.; Chen, X.; Yu, N.; Lai, Q.; Qin, J.G. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 2007, 265, 385–390. [Google Scholar] [CrossRef]
Ingredients (g kg−1) | Experimental Groups (g kg Diet−1) | |||
---|---|---|---|---|
Control | 1.0 | 2.0 | 3.0 | |
Soybean meal | 400.00 | 400.00 | 400.00 | 400.00 |
Wheat bran | 98.10 | 98.10 | 98.10 | 98.10 |
Wheat flour | 154.65 | 154.65 | 154.65 | 154.65 |
Fish meal | 150.00 | 150.00 | 150.00 | 150.00 |
Offal meal | 92.50 | 92.50 | 92.50 | 92.50 |
Fish oil | 42.40 | 41.40 | 40.40 | 39.40 |
Soy lecithin | 20.00 | 20.00 | 20.00 | 20.00 |
Limestone | 15.65 | 15.65 | 15.65 | 15.65 |
Salt | 8.00 | 8.00 | 8.00 | 8.00 |
Vitamin and mineral premix † | 8.00 | 8.00 | 8.00 | 8.00 |
Corn starch | 5.00 | 5.00 | 5.00 | 5.00 |
DL-methionine | 2.90 | 2.90 | 2.90 | 2.90 |
L-lysine | 1.60 | 1.60 | 1.60 | 1.60 |
Antifungal | 1.00 | 1.00 | 1.00 | 1.00 |
Butylated hydroxytoluene | 0.20 | 0.20 | 0.20 | 0.20 |
EO-OG | 0.00 | 1.00 | 2.00 | 3.00 |
Total | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Proximate composition | ||||
Moisture (%) | 8.57 | 8.92 | 8.69 | 9.04 |
Dry matter (%) | 91.43 | 91.08 | 91.31 | 90.96 |
Crude protein (%) | 39.5 | 39.12 | 38.22 | 38.54 |
Ash (%) | 9.17 | 8.99 | 9.46 | 8.65 |
Ether extract (%) | 7.07 | 7.15 | 6.9 | 7.01 |
NDF (%) | 29.42 | 29.45 | 28.27 | 28.6 |
Growth Parameters | Experimental Groups (g EO-OG kg Diet−1) | ||||
---|---|---|---|---|---|
Control | 1.0 | 2.0 | 3.0 | p-Value | |
Initial weight (g) | 0.028 ± 0.004 | 0.028 ± 0.004 | 0.028 ± 0.004 | 0.028 ± 0.004 | N/A |
Final weight (g) | 0.62 ± 0.22 | 0.66 ± 0.21 | 0.61 ± 0.19 | 0.62 ± 0.17 | 0.4419 |
Weight gain (g) | 0.58 ± 0.18 | 0.64 ± 0.21 | 0.58 ± 0.19 | 0.60 ± 0.18 | 0.2380 |
Initial biomass (g) | 0.42 ± 0.06 | 0.42 ± 0.06 | 0.42 ± 0.06 | 0.42 ± 0.06 | N/A |
Final biomass (g) | 7.93 ± 0.44 | 8.29 ± 0.77 | 7.75 ± 0.48 | 8.02 ± 0.57 | 0.4645 |
Biomass gain (g) | 7.51 ± 0.44 | 7.87 ± 0.77 | 7.33 ± 0.48 | 7.60 ± 0.57 | 0.4645 |
Final body length (cm) | 3.59 ± 0.48 | 3.66 ± 0.42 | 3.59 ± 0.44 | 3.60 ± 0.39 | 0.4433 |
Final antenna length (cm) | 2.76 ± 0.97 B | 2.89 ± 0.8 B | 2.66 ± 0.8 B | 3.37 ± 0.97 A | <0.001 |
FCR (g g−1) | 1.50 ± 0.08 | 1.44 ± 0.10 | 1.54 ± 0.10 | 1.48 ± 0.11 | 0.5419 |
Condition factor (K) | 1.31 ± 0.30 | 1.31 ± 0.15 | 1.31 ± 0.18 | 1.30 ± 0.23 | 0.9260 |
Survival (%) | 97.79 ± 3.45 | 96.65 ± 5.60 | 97.76 ± 3.45 | 98.88 ± 2.73 | 0.8126 |
Detoxification Biomarkers | Experimental Groups (g EO-OG kg Diet−1) | ||||
---|---|---|---|---|---|
Control | 1.0 | 2.0 | 3.0 | p-Value | |
CAT | 0.06 ± 0.03 B | 0.06 ± 0.05 B | 0.08 ± 0.03 B | 0.21 ± 0.14 A | 0.0126 |
GPx | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.3980 |
GR | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.011 ± 0.12 | 0.02 ± 0.03 | 0.1631 |
GSH | 23.19 ± 3.54 | 19.44 ± 12.8 | 14.93 ± 7.40 | 17.26 ± 16.47 | 0.8167 |
GST | 0.02 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.04 ± 0.02 | 0.2705 |
TBARS | 2.80 ± 0.34 A | 1.69 ± 0.84 B | 1.65 ± 0.39 B | 1.59 ± 0.63 B | 0.0111 |
Proximate Composition | Experimental Groups (g EO-OG kg Diet−1) | ||||
---|---|---|---|---|---|
Control | 1.0 | 2.0 | 3.0 | p-Value | |
Dry matter (%) | 24.84 ± 0.51 | 24.11 ± 0.24 | 24.15 ± 0.87 | 23.72 ± 0.80 | 0.476 |
Crude protein (%) | 68.70 ± 0.74 | 71.49 ± 0.67 | 70.11 ± 1.78 | 73.52 ± 1.60 | 0.077 |
Ash (%) | 13.63 ± 0.10 | 13.12 ± 0.21 | 13.21 ± 0.06 | 13.45 ± 0.14 | 0.062 |
Ether extract (%) | 8.51 ± 0.15 | 7.86 ± 0.29 | 8.14 ± 0.14 | 8.15 ± 0.27 | 0.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester, E.L.C.; Costa, W.G.d.S.; do Nascimento Ferreira, C.H.; Retcheski, M.C.; Cazarolli, L.H.; Schwengber, G.H.; Mauerwerk, M.T.; Pinheiro, C.G.; Heinzmann, B.M.; Baldisserotto, B.; et al. Dietary Ocimum gratissimum Essential Oil Improves the Antioxidant Status and Maintains the Performance of Macrobrachium rosenbergii Juveniles. Appl. Sci. 2025, 15, 2745. https://doi.org/10.3390/app15052745
Ballester ELC, Costa WGdS, do Nascimento Ferreira CH, Retcheski MC, Cazarolli LH, Schwengber GH, Mauerwerk MT, Pinheiro CG, Heinzmann BM, Baldisserotto B, et al. Dietary Ocimum gratissimum Essential Oil Improves the Antioxidant Status and Maintains the Performance of Macrobrachium rosenbergii Juveniles. Applied Sciences. 2025; 15(5):2745. https://doi.org/10.3390/app15052745
Chicago/Turabian StyleBallester, Eduardo Luis Cupertino, Wilson Gilberto da Silva Costa, Caio Henrique do Nascimento Ferreira, Milena Cia Retcheski, Luisa Helena Cazarolli, Gabriel Henrique Schwengber, Marlise Teresinha Mauerwerk, Carlos Garrido Pinheiro, Berta Maria Heinzmann, Bernardo Baldisserotto, and et al. 2025. "Dietary Ocimum gratissimum Essential Oil Improves the Antioxidant Status and Maintains the Performance of Macrobrachium rosenbergii Juveniles" Applied Sciences 15, no. 5: 2745. https://doi.org/10.3390/app15052745
APA StyleBallester, E. L. C., Costa, W. G. d. S., do Nascimento Ferreira, C. H., Retcheski, M. C., Cazarolli, L. H., Schwengber, G. H., Mauerwerk, M. T., Pinheiro, C. G., Heinzmann, B. M., Baldisserotto, B., & de Souza Valente, C. (2025). Dietary Ocimum gratissimum Essential Oil Improves the Antioxidant Status and Maintains the Performance of Macrobrachium rosenbergii Juveniles. Applied Sciences, 15(5), 2745. https://doi.org/10.3390/app15052745