Demystifying Quantum Gate Fidelity for Electronics Engineers
Abstract
:1. Introduction
2. Fidelity According to Shannon
3. The Fidelity of a Quantum Gate
4. Quantum Gate Fidelity in Matrix Form
5. Brief Case Studies
5.1. Pauli X Quantum Gate
5.2. CNOT Quantum Gate
5.3. Entanglement Fidelity
5.4. N-Qubit Quantum Gate
6. Energy Efficiency
7. Mixed States
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Qubit | Quantum bit |
BS | Bloch Sphere |
RFIC | Radio Frequency Integrated Circuit |
SFDR | Spurious Free Dynamic Range |
QEC | Quantum Error Correction |
AI | Artificial Intelligence |
RB | Randomized Benchmarking |
QPT | Quantum Process Tomography |
GST | Gate Set Tomography |
Appendix A
Appendix B
Appendix C
References
- Chang, C.R.; Wang, M.C. Tiny Quantum, Giant Revolution; World Scientific Publishing Company: Singapore, 2024; ISBN 978-9811287404. [Google Scholar]
- Peng, Y.; Benserhir, J.; Zou, Y.; Charbon, E. A Cryogenic Double-IF SSB Controller with Image Suppression and On-Chip Filtering implemented in 130nm SiGe BiCMOS Technology for Superconducting Qubit Control. In Proceedings of the 2024 IEEE Custom Integrated Circuits Conference (CICC), Denver, CO, USA, 21–24 April 2024; pp. 32–34. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tien, K.; Frolov, D.; Frank, D.; Rosno, P.; Yeck, M.; Bulzacchelli, J.; Baks, C.; Richetta, R.; Schmerbeck, T.; et al. A 12.8mW/channel cryogenic RF-AWG in 14nm FinFET for transmon qubit control. In Proceedings of the 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), Bruges, Belgium, 9–12 September 2024; pp. 153–156. [Google Scholar] [CrossRef]
- Chakraborty, S.; Joshi, R.V. Cryogenic CMOS Design for Qubit Control: Present Status, Challenges, and Future Directions. IEEE Circuits Syst. Mag. 2024, 24, 34–36. [Google Scholar] [CrossRef]
- Badiali, A.; Borgarino, M. Cryo-CMOS Multi-Frequency Modulator for 2-Qubit Controller. Electronics 2024, 13, 2546. [Google Scholar] [CrossRef]
- Anders, J.; Babaie, M.; Bardin, J.C.; Bashir, I.; Billiot, G.; Blokhina, E.; Bonen, S.; Charbon, E.; Chiaverini, J.; Chuang, I.L.; et al. CMOS Integrated Circuits for the Quantum Information Sciences. IEEE Trans. Quantum Eng. 2023, 4, 5100230. [Google Scholar] [CrossRef]
- Frank, D.J.; Chakraborty, S.; Tien, K.; Rosno, P.; Yeck, M.; Glick, J.A.; Robertazzi, R.; Richetta, R.; Bulzacchelli1, J.F.; Ramirez, D.; et al. Low power cryogenic RF ASICs for quantum computing. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), San Antonio, TX, USA, 23–26 April 2023. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Huang, W.; Tan, S.; Liu, Q.; Li, T.; Deng, N.; Wang, Z.; Zheng, Y.; Jiang, H. A Polar-Modulation-Based Cryogenic Qubit State Controller in 28nm Bulk CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–24 February 2023; pp. 508–510. [Google Scholar] [CrossRef]
- Kang, K.; Minn, D.; Lee, J.; Song, H.-J.; Lee, M.; Sim, J.-Y. A Cryogenic Controller IC for Superconducting Qubits with DRAG Pulse Generation by Direct Synthesis without Using Memory. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–24 February 2023; pp. 510–512. [Google Scholar] [CrossRef]
- Yoo, J.; Chen, Z.; Arute, F.; Montazeri, S.; Szalay, M.; Erickson, C.; Jeffrey, E.; Fatemi, R.; Giustina, M.; Ansmann, M.; et al. A 28-nm Bulk-CMOS IC for Full Control of a Superconducting. Quantum Processor Unit-Cell. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–24 February 2023; pp. 506–508. [Google Scholar] [CrossRef]
- Omirzakhov, K.; Idjadi, M.H.; Huang, T.Y.; Breitweiser, S.A.; Hopper, D.A.; Bassett, L.C.; Aflatouni, F. An Integrated Reconfigurable Spin Control System on 180 nm CMOS for Diamond NV Centers. IEEE Trans. Microw. Theory Technol. 2023, 71, 4052–4063. [Google Scholar] [CrossRef]
- Omirzakhov, K.; Idjadi, M.H.; Huang, T.-Y.; Breitweiser, S.A.; Hopper, D.A.; Bassett, L.C.; Aflatouni, F. An Integrated Quantum Spin Control System in 180nm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Denver, CO, USA, 19–21 June 2022; pp. 36–43. [Google Scholar] [CrossRef]
- Kang, K.; Minn, D.; Bae, S.; Lee, J.; Kang, S.; Lee, M.; Song, H.-J.; Sim, J.-Y. A 40-nm Cryo-CMOS Quantum Controller IC for Superconducting Qubit. IEEE J. Solid-State Circuits 2022, 57, 3274–3287. [Google Scholar] [CrossRef]
- Frank, D.J.; Chakraborty, S.; Tien, K.; Rosno, P.; Fox, T.; Yeck, M.; Glick, J.A.; Robertazzi, R.; Richetta, R.; Bulzacchelli, J.F.; et al. A Cryo-CMOS Low-Power Semi-Autonomous Qubit State Controller in 14nm FinFET Technology. In Proceedings of the IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; pp. 360–362. [Google Scholar] [CrossRef]
- Nikandish, R.; Blokhina, E.; Leipold, D.; Staszewski, R.B. Semiconductor Quantum Computing: Toward a CMOS quantum computer on chip. IEEE Nanotechnol. Mag. 2021, 15, 8–20. [Google Scholar] [CrossRef]
- Park, J.-S.; Subramanian, S.; Lampert, L.; Mladenov, T.; Klotchkov, I.; Kurian, D.J.; Juarez-Hernandez, E.; Perez-Esparza, B.; Kale, S.R.; Asma Beevi, K.T.; et al. A Fully Integrated Cryo-CMOS SoC for Qubit Control in Quantum Computers Capable of State Manipulation, Readout and High-Speed Gate Pulsing of Spin Qubits in Intel 22nm FFL FinFET Technology. In Proceedings of the IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 3 March 2021; pp. 208–210. [Google Scholar] [CrossRef]
- Hasler, J.; Dick, N.; Das, K.; Degnan, B.; Moini, A.; Reilly, D. Cryogenic Floating-Gate CMOS Circuits for Quantum Control. IEEE Trans. on Quantum Eng. 2021, 2, 5501510. [Google Scholar] [CrossRef]
- Pauka, S.J.; Das, K.; Kalra, R.; Moini, A.; Yang, Y.; Trainer, M.; Bousquet, A.; Cantaloube, C.; Dick, N.; Gardner, G.C.; et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron. 2021, 4, 64–70. [Google Scholar] [CrossRef]
- Charbon, E. Cryo-CMOS Electronics for Quantum Computing. IEEE Solid-State Circuits Mag. 2021, 13, 54–68. [Google Scholar] [CrossRef]
- Bardin, J.C. A Low-Power CMOS Quantum Controller for Transmon Qubits. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 537–540. [Google Scholar] [CrossRef]
- Craninckx, J.; Potočnik, A.; Parvais, B.; Grill, A.; Narasimhamoorthy, S.; Van Winckel, S.; Brebels, S.; Mongillo, M.; Li, R.; Govoreanu, B.; et al. CMOS Cryo-Electronics for Quantum Computing. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 521–524. [Google Scholar] [CrossRef]
- Borgarino, M.; Badiali, A. Quantum Gates for Electronics Engineers. Electronics 2023, 12, 4664. [Google Scholar] [CrossRef]
- Bardin, J.C.; Slichter, D.H.; Reilly, D.J. Microwaves in Quantum Computing. IEEE J. Microw. 2021, 1, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Sanders, Y.R.; Wallman, J.J.; Sanders, B.C. Bounding quantum gate error rate based on reported average fidelity. IOP Dtsch. Phys. Ges. New J. Phys. 2016, 18, 012002. [Google Scholar] [CrossRef]
- Devitt, S.J.; Munro, W.J.; Nemoto, K. Quantum error correction for beginners. IOP Rep. Prog. Phys. 2013, 76, 076001. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-1-107-00217-3. [Google Scholar]
- Benhelm, J.; Kirchmair, G.; Roos, C.F.; Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 2008, 4, 463–466. [Google Scholar] [CrossRef]
- Van Dijk, J.P.G.; Kawakami, E.; Schouten, R.N.; Veldhorst, M.; Vandersypen, L.M.K.; Babaie, M.; Charbon, E.; Sebastiano, F. Impact of Classical Control Electronics on Qubit Fidelity. Phys. Rev. Applied 2019, 12, 044054. [Google Scholar] [CrossRef]
- Ferraro, E.; Fanciulli, M.; De Michielis, M. Gate fidelity comparison in semiconducting spin qubit implementations affected by control noises. IOP J. Phys. Commun. 2018, 2, 115022. [Google Scholar] [CrossRef]
- Fakkel, N.; Enthoven, L.; Yun, J.; Van Riggelen, M.; Van Ommen, H.B.; Schymik, K.-N.; Bartling, H.P.; Katranara, E.T.; Vollmer, R.; Taminiau, T.H.; et al. A Cryo-CMOS Controller with Class-DE Driver and DC Magnetic-Field Tuning for Quantum Computers Based on Color Centers in Diamond. IEEE J. Solid-State Circuits 2024, 59, 3627–3643. [Google Scholar] [CrossRef]
- Tyryshkin, A.; Tojo, S.; Morton, J.L.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Schenkel, T.; Thewalt, M.L.W.; Itoh, K.M.; et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 2012, 11, 143–147. [Google Scholar] [CrossRef]
- Pedersen, L.H.; Møller, N.M.; Mølmer, K. Fidelity of quantum operations. Elsevier Phys. Lett. A 2007, 367, 47–51. [Google Scholar] [CrossRef]
- Bruß, D.; DiVincenzo, D.P.; Ekert, A.; Fuchs, C.A.; Macchiavello, C.; Smolin, J.A. Optimal universal and stae-dependent quantum cloning. APS Phys. Rev. A 1998, 57, 2368–2378. [Google Scholar] [CrossRef]
- Bowdrey, A.D.; Oi, D.K.L.; Short, A.J.; Banaszek, K.; Jones, J.A. Fidelity of single qubit maps. Elsevier Phys. Lett. A 2002, 294, 258–260. [Google Scholar] [CrossRef]
- Baldwin, A.J.; Jones, J.A. Efficiently computing the Uhlmann fidelity for density matrices. APS Phys. Rev. A 2023, 107, 012427. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Evered, S.J.; Bluvstein, D.; Kalinowski, M.; Ebadi, S.; Manovitz, T.; Zhou, H.; Li, S.H.; Geim, A.A.; Wang, T.T.; Maskara, N.; et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 2023, 622, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Wilde, W. Quantum Information Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1107176164. [Google Scholar]
- Kemp, C.J.D.; Cooper, N.R.; Ünal, F.N. Nested-sphere description of the N-level Chern number and the generalized Bloch hypersphere. APS Phys. Rev. Res. 2022, 4, 023120. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principle of Quantum Mechanics, 4th ed.; Clarendon Press: Oxford, UK, 1958; ISBN 978-0198512080. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-0521548236. [Google Scholar]
- Zettili, N. Quantum Mechanics, 3rd ed.; Wiley & Sons: Hoboken, NJ, USA, 2022; ISBN 9781118307892. [Google Scholar]
- Susskind, L.; Friedman, A. Quantum Mechanics: The Theoretical Minimum, 1st ed.; Penguin Books Ltd.: London, UK, 2014; ISBN 978-0141977812. [Google Scholar]
- Merzbacher, E. Quantum Mechanics, 2nd ed. Wiley & Sons: Hoboken, NJ, USA; ISBN 978-0471887027.
- Horodecki, M.; Horodecki, P.; Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. APS Phys. Rev. A 1999, 60, 1888–1898. [Google Scholar] [CrossRef]
- Barends, R.; Kelly, J.; Megrant, A.; Veitia, A.; Sank, D.; Jeffrey, E.; White, T.C.; Mutus, J.; Fowler, A.G.; Campbell, B.; et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 2014, 508, 500–503. [Google Scholar] [CrossRef]
- AbuGhanem, M.; Eleuch, J. Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers. EPJ Quantum Technol. 2024, 11, 36. [Google Scholar] [CrossRef]
- Rower, D.A.; Ding, L.; Zhang, H.; Hays, M.; An, J.; Harrington, P.M.; Rosen, I.T.; Gertler, J.M.; Hazard, T.M.; Niedzielski, B.M.; et al. Suppressing Counter-Rotating Errors for Fast Single-Qubit Gates with Fluxonium. Am. Phys. Soc. PRX Quantum. 2024, 5, 040342. [Google Scholar] [CrossRef]
- Dehollain, J.P.; Muhonen, J.T.; Blume-Kohout, R.; Rudinger, K.M.; Gamble, J.K.; Nielsen, E.; Laucht, A.; Simmons, S.; Kalra, R.; Dzurak, A.S.; et al. Optimization of a solid-state electron spin qubit using gate set tomography. IOP Dtsch. Phys. Ges. New J. Phys. 2016, 18, 103018. [Google Scholar] [CrossRef]
- Tannu, S.S.; Qureshi, M.K. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Providence, RI, USA, 13–17 April 2019; pp. 987–999. [Google Scholar] [CrossRef]
- Quantum error correction below the surface code threshold. Nature 2024. [CrossRef]
- Ikonen, J.; Salmilehto, J.; Möttönen, M. Energy-efficient quantum computing. NPJ Quantum Inf. 2017, 3, 17. [Google Scholar] [CrossRef]
- Auffèves, A. Quantum Technologies Need a Quantum Energy Initiative. Am. Phys. Soc. PRX Quantum 2022, 3, 020101. [Google Scholar] [CrossRef]
- Huang, J.Y.; Su, R.Y.; Lim, W.H.; Feng, M.; Van Straaten, B.; Severin, B.; Gilbert, W.; Stuyck, N.D.; Tanttu, T.; Serrano, S.; et al. High-fidelity spin qubit operation and algorithmic initialization above 1 K. Nature 2024, 627, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Bialczak, R.C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O’Connell, A.D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 2010, 6, 409–413. [Google Scholar] [CrossRef]
- Nielsen, M.A. A simple formula for the average gate fidelity of quantum dynamical operation. Elsevier Phys. Lett. A 2002, 303, 249–252. [Google Scholar] [CrossRef]
- Życzkowski, K.; Sommers, H.-J. Average fidelity between random quantum states. APS Phys. Rev. A 2005, 71, 032313. [Google Scholar] [CrossRef]
- Uhlmann, A. The transition probability in the state space of a *-algebra. Rep. Math. Phys. 1976, 9, 273–279. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 12, 2315–2323. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Pryde, G.J.; Gilchrist, A.; James, D.F.; Langford, N.K.; Ralph, T.C.; White, A.G. Quantum Process Tomography of a Controlled-NOT Gate. Phys. Rev. Lett. 2004, 93, 080502. [Google Scholar] [CrossRef]
- Koutromanos, D.; Stefanatos, D.; Paspalakis, E. Control of Qubit Dynamics Using Reinforcement Learning. Information 2024, 15, 272. [Google Scholar] [CrossRef]
- Bonizzoni, C.; Tincani, M.; Santanni, F.; Affronte, M. Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits. Phys. Rev. Appl. 2022, 18, 064074. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence and the Transition from Quantum to Classical—Revisited. Prog. Math. Phys. 2006, 48, 86–109. [Google Scholar] [CrossRef]
- Marcella, T.V. Quantum Entanglement and the Loss of Reality, 1st ed.; Createspace Independent Publishing Platform: Scotts Valley, CA, USA, 2018; ISBN 978-1981807420. [Google Scholar]
Quantum Gate | |||
---|---|---|---|
One-qubit (Pauli X) | |||
Two-qubit (CNOT) | |||
N-qubit |
Number of Qubits | Qubit Technology | Fidelity [%] | Reference |
---|---|---|---|
1 | Superconducting | 99.9 | [46] |
1 | Superconducting | 99.8 | [47] |
1 | Superconducting | >99.9 | [48] |
1 | Electron Spin | 99.9 | [49] |
2 | Superconducting | 99.4 | [47] |
2 | Superconducting | 99.4 | [46] |
2 | Trapped ions | 99.3 | [47] |
2 | Neutral atom | 99.5 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgarino, M.; Badiali, A. Demystifying Quantum Gate Fidelity for Electronics Engineers. Appl. Sci. 2025, 15, 2675. https://doi.org/10.3390/app15052675
Borgarino M, Badiali A. Demystifying Quantum Gate Fidelity for Electronics Engineers. Applied Sciences. 2025; 15(5):2675. https://doi.org/10.3390/app15052675
Chicago/Turabian StyleBorgarino, Mattia, and Alessandro Badiali. 2025. "Demystifying Quantum Gate Fidelity for Electronics Engineers" Applied Sciences 15, no. 5: 2675. https://doi.org/10.3390/app15052675
APA StyleBorgarino, M., & Badiali, A. (2025). Demystifying Quantum Gate Fidelity for Electronics Engineers. Applied Sciences, 15(5), 2675. https://doi.org/10.3390/app15052675