Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Salt Treatment
2.2. Assessment of Physiological and Phenotypic Indices for Leaf Stress Resistance
2.3. RNA Extraction, cDNA Library Construction, and Transcriptome Sequencing
2.4. Gene Annotation, Differential Expression Analysis, and Evaluation of Enrichment
2.5. Metabolite Extraction
2.6. Preparation of Data and Statistical Evaluation
2.7. Analysis of Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
3. Results
3.1. Phenotypes
3.2. Physiological and Phenotype Analysis
3.3. Effect of Salt Stress on the Transcriptome of A. mongholicus Leaves
3.3.1. Transcriptome Sequencing Analysis
3.3.2. GO and KEGG Enrichment of DEGs
3.3.3. Quantitative Real-Time PCR Analysis
3.4. Effects of Salt Stress on the Metabolome of A. mongholicus Leaves
3.4.1. Metabolomic Analysis
3.4.2. KEGG Enrichment of DAMs
3.5. Combined Transcriptome and Metabolome Analysis of A. mongholicus Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component | Volume |
---|---|
PerfectStart® Green qPCR SuperMix (+Dye II) | 10 μL |
Forward and reverse primers | 2 μL |
DNA template | 2 μL |
H2O | 6 μL |
Total volume | 20 μl |
PerfectStart® Green qPCR SuperMix (+Dye II) | 10 μL |
References
- Fan, C.X. Genetic mechanisms of salt stress responses in halophytes. Plant Signal. Behav. 2020, 15, 1704528. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J. Integrated life cycle assessment of improving saline-sodic soil with flue gas desulfurization gypsum. J. Clean. Prod. 2018, 202, 332–341. [Google Scholar] [CrossRef]
- Kumar, A.; Mann, A.; Kumar, A.; Kumar, N.; Meena, B.L. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. Int. J. Phytoremediation 2021, 23, 1041–1051. [Google Scholar] [CrossRef]
- Zhu, J.-K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Ismail, A.M.; Horie, T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Sofy, M.R.; Aboseidah, A.A.; Heneidak, S.A.; Ahmed, H.R. ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ. Sci. Pollut. Res. 2021, 28, 40971–40991. [Google Scholar] [CrossRef]
- Kim, J.; Lee, W.J.; Vu, T.T.; Jeong, C.Y.; Hong, S.W.; Lee, H. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Rep. 2017, 36, 1215–1224. [Google Scholar] [CrossRef]
- Shen, W.; Liu, D.; Zhang, H.; Zhu, W.; He, H.; Li, G.; Liu, J. Overexpression of β-cyanoalanine synthase of Prunus persica increases salt tolerance by modulating ROS metabolism and ion homeostasis. Environ. Exp. Bot. 2021, 186, 104431. [Google Scholar] [CrossRef]
- Ma, B.; Song, Y.; Feng, X.H.; Guo, P.; Zhou, L.X.; Jia, S.J.; Guo, Q.X.; Zhang, C.Y. Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress. Horticulturae 2024, 10, 1084. [Google Scholar] [CrossRef]
- Lv, X.L.; Zhu, L.; Ma, D.M.; Zhang, F.J.; Cai, Z.Y.; Bai, H.B.; Hui, J.; Li, S.H.; Xu, X.; Li, M. Integrated Metabolomics and Transcriptomics Analyses Highlight the Flavonoid Compounds Response to Alkaline Salt Stress in Glycyrrhiza uralensis Leaves. J. Agric. Food Chem. 2024, 72, 5477–5490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Liu, W.; Li, W.; Wang, C.J.; Dai, H.Y.; Xu, R.; Zhang, Y.W.; Zhang, L.F. Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress. Front. Plant Sci. 2024, 15, 1415867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, S.K.; Qin, B.; Sun, H.Y.; Yuan, X.K.; Wang, Q.; Xu, J.J.; Yin, Z.G.; Du, Y.L.; Du, J.D.; et al. Analysis of the transcriptome and metabolome reveals phenylpropanoid mechanism in common bean (Phaseolus vulgaris) responding to salt stress at sprout stage. Food Energy Secur. 2023, 12, e481. [Google Scholar] [CrossRef]
- Xu, Z.S.; Chen, X.J.; Lu, X.P.; Zhao, B.P.; Yang, Y.M.; Liu, J.H. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Wang, J.M.; Wang, Z.; Wang, P.P.; Wu, J.H.; Kong, L.Y.; Ma, L.L.; Jiang, S.; Ren, W.C.; Liu, W.L.; Guo, Y.L.; et al. Genome-wide identification of YABBY gene family and its expression pattern analysis in Astragalus mongholicus. Plant Signal. Behav. 2024, 19, 2355740. [Google Scholar] [CrossRef]
- Bi, Q.; Yao, H.; Wang, F.; He, D.J.; Xu, W.B.; Xie, S.Q.; Chen, X.F.; Li, Y.X.; Liu, H.L.; Shen, H.T.; et al. Integrative analysis of the pharmaceutical active ingredient and transcriptome of the aerial parts of Glycyrrhiza uralensis under salt stress reveals liquiritin accumulation via ABA-mediated signaling. Mol. Genet. Genom. 2022, 297, 333–343. [Google Scholar] [CrossRef]
- Ren, W.; Wang, Q.; Chen, L.; Ren, Y.P. Transcriptome and Metabolome Analyses of Salt Stress Response in Cotton (Gossypium hirsutum) Seed Pretreated with NaCl. Agronomy 2022, 12, 1849. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, H.J.; Zhang, S.Y.; Du, S.F.; Wang, G.Y.; Zhang, J.C.; Jiang, J. Analysis of the Antioxidant Mechanism of Tamarix ramosissima Roots under NaCl Stress Based on Physiology, Transcriptomic and Metabolomic. Antioxidants 2022, 11, 2362. [Google Scholar] [CrossRef]
- Ren, G.Z.; Yang, P.Y.; Cui, J.H.; Gao, Y.K.; Yin, C.P.; Bai, Y.Z.; Zhao, D.T.; Chang, J.H. Multiomics Analyses of Two Sorghum Cultivars Reveal the Molecular Mechanism of Salt Tolerance. Front. Plant Sci. 2022, 13, 886805. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Guo, F.; Chen, Y.; Bai, G.; Yuan, H.; Liang, W. Effect of various crop residues on growth and disease resistance of Angelica sinensis seedlings in Min County. J. Acta Prataculturae Sin. 2018, 27, 69–78. [Google Scholar] [CrossRef]
- Huo, Q.-P.; Li, J.-B.; Men, X.-L.; Fan, H.-B.; Liu, Z.-P.; Ba, T.; Xu, S.-J. Identification of elite salt-tolerant barley germplasms at the seedling stage and screening for effective evaluation indexes. J. Shenyang Agric. Univ. 2022, 53, 665–676. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Sheng, J. Integrative analysis of the transcriptome and metabolome reveals the mechanism of saline–alkali stress tolerance in Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao. Food Qual. Saf. 2022, 6, fyac001. [Google Scholar] [CrossRef]
- Sikder, R.K.; Wang, X.; Jin, D.; Zhang, H.; Gui, H.; Dong, Q.; Pang, N.; Zhang, X.; Song, M. Screening and evaluation of reliable traits of upland cotton (Gossypium hirsutum L.) genotypes for salt tolerance at the seedling growth stage. J. Cotton Res. 2020, 3, 11. [Google Scholar] [CrossRef]
- Khalil, C.; El Houssein, B.; Hassan, B.; Fouad, M. Comparative Salt Tolerance Study of Some Acacia Species at Seed Germination Stage. Asian J. Plant Sci. 2016, 15, 66–74. [Google Scholar] [CrossRef]
- Liu, D.; Guo, H.L.; Yan, L.P.; Gao, L.; Zhai, S.S.; Xu, Y. Physiological, Photosynthetic and Stomatal Ultrastructural Responses of Quercus acutissima Seedlings to Drought Stress and Rewatering. Forests 2024, 15, 71. [Google Scholar] [CrossRef]
- Muhammad Adnan, S.; Ali, S.; Naeem, K.; Rashad Mukhtar, B.; Shahid, A.; Lorenzo, R.; Celina, G.; Neil, S.M.; Wajid, N.; Francisco, G.S. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Liu, W.; Feng, J.P.; Ma, W.Y.; Zhou, Y.; Ma, Z.B. GhCLCg-1, a Vacuolar Chloride Channel, Contributes to Salt Tolerance by Regulating Ion Accumulation in Upland Cotton. Front. Plant Sci. 2021, 12, 765173. [Google Scholar] [CrossRef]
- Shen, J.; Chen, D.D.; Zhang, X.P.; Song, L.R.; Dong, J.; Xu, Q.J.; Hu, M.J.; Cheng, Y.Y.; Shen, F.F.; Wang, W. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. J. Plant Res. 2021, 134, 857–871. [Google Scholar] [CrossRef]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef]
- Raza, S.H.; Athar, H.R.; Ashraf, M.; Hameed, A. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 2007, 60, 368–376. [Google Scholar] [CrossRef]
- Moghaddam, M.; Farhadi, N.; Panjtandoust, M.; Ghanati, F. Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosyst. 2020, 154, 835–842. [Google Scholar] [CrossRef]
- Zhao, X.T.; Tian, L.; Zhu, Z.L.; Sang, Z.Y.; Ma, L.Y.; Jia, Z.K. Growth and Physiological Responses of Magnoliaceae to NaCl Stress. Plants 2024, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.E.; Ning, N.; Liang, D.; Zhang, H.P.; Li, S.S.; Li, S.; Fan, X.Q.; Zhang, Y.Z. Seed priming with selenite enhances germination and seedling growth of Sorghum Sorghum bicolor (L.) Moench under salt stress. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2023, 73, 42–53. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Aung, B.; Amyot, L.; Lalin, I.; Lachâal, M.; Karray-Bouraoui, N.; Hannoufa, A. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 2016, 38, 72. [Google Scholar] [CrossRef]
- Mekawy, A.M.M.; Abdelaziz, M.N.; Ueda, A. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol. Biochem. 2018, 130, 94–104. [Google Scholar] [CrossRef]
- Amooaghaie, R.; Korrani, F.M.; Ghanadian, M.; Ahadi, A.; Pak, A.; Mardani, G. Hybrid Priming with He–Ne Laser and Hydrogen Peroxide Advances Phenolic Composition and Antioxidant Quality of Salvia officinalis Under Saline and Non-Saline Condition. J. Plant Growth Regul. 2023, 43, 1012–1025. [Google Scholar] [CrossRef]
- Rao, M.J.; Feng, B.; Ahmad, M.H.; Qamar, M.T.U.; Aslam, M.Z.; Khalid, M.F.; Hussain, S.; Zhong, R.; Ali, Q.; Xu, Q.; et al. LC-MS/MS-based metabolomics approach identified novel antioxidant flavonoids associated with drought tolerance in citrus species. Front. Plant Sci. 2023, 14, 1150854. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Li, C.L.; Wang, Z.J.; Lu, C.; Cheng, J.S.; Wei, S.L.; Yang, J.S.; Yang, Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC Plant Biol. 2024, 24, 132. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lyv, Y.Y.; Zheng, W.K.; Yang, C.K.; Li, Y.F.; Wang, X.Y.; Chen, R.D.; Wang, C.; Luo, J.; Qu, L.H. Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice (Oryza sativa). Metabolites 2021, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.X.; Luo, X.H.; Fan, M.C.; Al-Ansi, W.; Qian, H.F.; Li, Y.; Wang, L. NaCl stress enhances pigment accumulation and synthesis in red rice during the germination stage. Food Biosci. 2023, 56, 103224. [Google Scholar] [CrossRef]
- Zhang, X.B.; Liu, C.J. Multifaceted Regulations of Gateway Enzyme Phenylalanine Ammonia-Lyase in the Biosynthesis of Phenylpropanoids. Mol. Plant 2015, 8, 17–27. [Google Scholar] [CrossRef]
- Qin, X.Y.; Qin, B.B.; He, W.; Chen, Y.; Yin, Y.; Cao, Y.L.; An, W.; Mu, Z.X.; Qin, K. Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress. Sustainability 2022, 14, 12617. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wang, Y.; Wang, Y.; Gao, S.; Zhang, T.; Guo, J.; Shi, L. Integrated metabolomic and transcriptomic strategies to reveal alkali-resistance mechanisms in wild soybean during post-germination growth stage. Planta 2023, 257, 95. [Google Scholar] [CrossRef]
- Ismail, G.S.M.; Ali, A.S.; Eldebawy, E.M.M.; Saber, N.E. Role of cellular NADP+/NADPH ratio in the acclimative mechanism of two common bean cultivars toward salt stress. J. Appl. Bot. Food Qual. 2017, 90, 43–51. [Google Scholar] [CrossRef]
- Liu, L.J.; Lin, L.D. Effect of Heat Stress on Sargassum fusiforme Leaf Metabolome. J. Plant Biol. 2020, 63, 229–241. [Google Scholar] [CrossRef]
- Liu, E.L.; Xu, L.L.; Luo, Z.Q.; Li, Z.Q.; Zhou, G.H.; Gao, H.F.; Fang, F.R.; Tang, J.; Zhao, Y.; Zhou, Z.L.; et al. Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes. Front. Plant Sci. 2023, 14, 1136709. [Google Scholar] [CrossRef]
- Shi, P.B.; Gu, M.F. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biol. 2020, 20, 568. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, L.J.; Pan, S.Y.; Li, X.W.; Xu, M.J.; Zhang, C.M.; Xing, K.; Qin, S. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere 2020, 16, 100262. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Turan, M.; Yuce, M.; Ors, S.; Araz, O.; Torun, U.; Argin, S. Exogenous dopamine mitigates the effects of salinity stress in tomato seedlings by alleviating the oxidative stress and regulating phytohormones. Acta Physiol. Plant. 2024, 46, 59. [Google Scholar] [CrossRef]
- Zou, L.J.; Li, T.T.; Li, B.B.; He, J.; Liao, C.L.; Wang, L.Z.; Xue, S.Y.; Sun, T.; Ma, X.; Wu, Q.G. De novo transcriptome analysis provides insights into the salt tolerance of Podocarpus macrophyllus under salinity stress. BMC Plant Biol. 2021, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Wu, Y.; Wang, Y.; Zhang, Y. Comparative Transcriptomic Analysis Reveals Transcriptional Differences in the Response of Quinoa to Salt and Alkali Stress Responses. Agronomy 2024, 14, 1596. [Google Scholar] [CrossRef]
- Bai, J.; Lu, P.; Li, F.; Li, L.; Yin, Q. Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions. Agronomy 2023, 13, 1441. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Gao, Y.; Liu, X. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecol. Sin. 2017, 37, 5565–5577. [Google Scholar]
Gene ID | Primers (5′ to 3′) |
---|---|
EF-1-alpha | F: TCAGGAAGCTCTTCCTGGTG |
R: CAATGTGAGAGGTGTGGCAG | |
Cluster-33548.11 | F: GGCTATTGGTACTGCAAACCCAT |
R: ACCACCACCATGTCTTGTCTAG | |
Cluster-46405.0 | F: TGGGAATGCAAATTCTTCCACTCC |
R: AGAGCCTTCTAAAGTCAGTGCAG | |
Cluster-46405.4 | F: TAACGATTGTATCGAGCAAACCGG |
R: TTACCATCTACCGCTCGGGC | |
Cluster-28058.0 | F: ATGGTGGTAATTTCAACCAAGGCT |
R: GTGCCAGCAGAGTTACCGG | |
Cluster-55450.0 | F: ATTGGCCTTGGAGGACTTTGTG |
R: GGTTGGTTTAAAGAAGGGAGGTTGT | |
Cluster-45789.7 | F: GCGAGCATGAAGTTTGTGTGTG |
R: GACCAGGACCACCCTTCAGAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sheng, J.; Yang, J.; Li, X. Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus. Appl. Sci. 2025, 15, 2575. https://doi.org/10.3390/app15052575
Liu Y, Sheng J, Yang J, Li X. Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus. Applied Sciences. 2025; 15(5):2575. https://doi.org/10.3390/app15052575
Chicago/Turabian StyleLiu, Yuxiao, Jinhua Sheng, Jiaqing Yang, and Xingcong Li. 2025. "Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus" Applied Sciences 15, no. 5: 2575. https://doi.org/10.3390/app15052575
APA StyleLiu, Y., Sheng, J., Yang, J., & Li, X. (2025). Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus. Applied Sciences, 15(5), 2575. https://doi.org/10.3390/app15052575